Suppr超能文献

S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

作者信息

Zhang Lan, Lu Jian, Takei Ryohei, Makimoto Natsumi, Itoh Toshihiro, Kobayashi Takeshi

机构信息

Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan.

出版信息

Rev Sci Instrum. 2016 Aug;87(8):085005. doi: 10.1063/1.4960959.

Abstract

We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验