Udvardi Péter, Radó János, Straszner András, Ferencz János, Hajnal Zoltán, Soleimani Saeedeh, Schneider Michael, Schmid Ulrich, Révész Péter, Volk János
Institute for Technical Physics and Materials Science, MTA EK, 1121 Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary.
Doctoral School on Material Sciences and Technologies, Óbuda University, Bécsi út 96/b, H-1034 Budapest, Hungary.
Micromachines (Basel). 2017 Oct 18;8(10):311. doi: 10.3390/mi8100311.
Fully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes the following components: frequency selective microphone or accelerometer, energy harvesting device, speech processor, and cochlear multielectrode. Here we demonstrate a low volume, piezoelectric micro-electromechanical system (MEMS) cantilever array which is sensitive, even in the lower part of the voice frequency range (300⁻700 Hz). The test array consisting of 16 cantilevers has been fabricated by standard bulk micromachining using a Si-on-Insulator (SOI) wafer and aluminum nitride (AlN) as a complementary metal-oxide-semiconductor (CMOS) and biocompatible piezoelectric material. The low frequency and low device footprint are ensured by Archimedean spiral geometry and Si seismic mass. Experimentally detected resonance frequencies were validated by an analytical model. The generated open circuit voltage (3⁻10 mV) is sufficient for the direct analog conversion of the signals for cochlear multielectrode implants.
完全可植入、无需外部装置的自供电助听器可显著提高重度听力损失患者的生活质量。然而,这一要求极高的概念需要一个高度小型化的装置,该装置要能完全植入中耳/内耳,且包括以下组件:频率选择性麦克风或加速度计、能量收集装置、语音处理器以及耳蜗多电极。在此,我们展示了一种低体积的压电微机电系统(MEMS)悬臂阵列,它即使在语音频率范围的较低部分(300⁻700赫兹)也很灵敏。由16个悬臂组成的测试阵列是通过标准体微加工工艺,使用绝缘体上硅(SOI)晶圆和氮化铝(AlN)作为互补金属氧化物半导体(CMOS)及生物相容性压电材料制造而成。阿基米德螺旋几何形状和硅地震质量确保了低频和小尺寸的器件。实验检测到的共振频率通过一个分析模型得到了验证。所产生的开路电压(3⁻10毫伏)足以对耳蜗多电极植入物的信号进行直接模拟转换。