Suppr超能文献

转录因子对miRNA调控的全基因组预测。

Genome wide predictions of miRNA regulation by transcription factors.

作者信息

Ruffalo Matthew, Bar-Joseph Ziv

机构信息

Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213.

出版信息

Bioinformatics. 2016 Sep 1;32(17):i746-i754. doi: 10.1093/bioinformatics/btw452.

Abstract

MOTIVATION

Reconstructing regulatory networks from expression and interaction data is a major goal of systems biology. While much work has focused on trying to experimentally and computationally determine the set of transcription-factors (TFs) and microRNAs (miRNAs) that regulate genes in these networks, relatively little work has focused on inferring the regulation of miRNAs by TFs. Such regulation can play an important role in several biological processes including development and disease. The main challenge for predicting such interactions is the very small positive training set currently available. Another challenge is the fact that a large fraction of miRNAs are encoded within genes making it hard to determine the specific way in which they are regulated.

RESULTS

To enable genome wide predictions of TF-miRNA interactions, we extended semi-supervised machine-learning approaches to integrate a large set of different types of data including sequence, expression, ChIP-seq and epigenetic data. As we show, the methods we develop achieve good performance on both a labeled test set, and when analyzing general co-expression networks. We next analyze mRNA and miRNA cancer expression data, demonstrating the advantage of using the predicted set of interactions for identifying more coherent and relevant modules, genes, and miRNAs. The complete set of predictions is available on the supporting website and can be used by any method that combines miRNAs, genes, and TFs.

AVAILABILITY AND IMPLEMENTATION

Code and full set of predictions are available from the supporting website: http://cs.cmu.edu/~mruffalo/tf-mirna/

CONTACT

zivbj@cs.cmu.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

从表达和相互作用数据重建调控网络是系统生物学的一个主要目标。虽然很多工作都集中在试图通过实验和计算来确定调控这些网络中基因的转录因子(TFs)和微小RNA(miRNAs)的集合,但相对较少的工作集中在推断TFs对miRNAs的调控。这种调控在包括发育和疾病在内的几个生物学过程中可以发挥重要作用。预测此类相互作用的主要挑战是目前可用的正训练集非常小。另一个挑战是,很大一部分miRNAs是在基因内编码的,这使得很难确定它们被调控的具体方式。

结果

为了实现对TF-miRNA相互作用的全基因组预测,我们扩展了半监督机器学习方法,以整合大量不同类型的数据,包括序列、表达、ChIP-seq和表观遗传数据。如我们所示,我们开发的方法在标记测试集上以及分析一般共表达网络时都取得了良好的性能。接下来,我们分析了mRNA和miRNA癌症表达数据,证明了使用预测的相互作用集来识别更连贯和相关的模块、基因和miRNAs的优势。完整的预测集可在支持网站上获得,任何结合miRNAs、基因和TFs的方法都可以使用。

可用性和实现

代码和完整的预测集可从支持网站获取:http://cs.cmu.edu/~mruffalo/tf-mirna/

联系方式

zivbj@cs.cmu.edu

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验