Tao Jili, Ma Longhua, Zhu Yong
Ningbo Institute of technology, Zhejiang University, Ningbo 315100, PR China.
Ningbo Institute of technology, Zhejiang University, Ningbo 315100, PR China.
ISA Trans. 2016 Nov;65:319-326. doi: 10.1016/j.isatra.2016.08.015. Epub 2016 Aug 31.
Inspired by the state space model based predictive control, this paper presents the combination design of extended non-minimal state space predictive control (ENMSSPC) and modified linear quadratic regulator (LQR) for a kind of nonlinear process with output feedback coupling, which shows improved control performance for both model/plant match and model/plant mismatch cases. In many previous control methods for this kind of nonlinear systems, the nonlinear part is treated in different ways such as ignored, represented as a rough linear one or assumed to be time-variant when corresponding predictive control methods are designed. However, the above methods will generally lead to information loss, resulting in the influenced control performance. This paper will show that the ENMSSPC-LQ control structure will further improve closed-loop control performance concerning tracking ability and disturbance rejection compared with previous predictive control methods.
受基于状态空间模型的预测控制启发,本文针对一类具有输出反馈耦合的非线性过程,提出了扩展非最小状态空间预测控制(ENMSSPC)与改进线性二次调节器(LQR)的组合设计,该设计在模型/对象匹配和模型/对象失配情况下均表现出改进的控制性能。在以往针对此类非线性系统的许多控制方法中,在设计相应的预测控制方法时,非线性部分的处理方式各不相同,如被忽略、被表示为粗略的线性部分或被假定为时变的。然而,上述方法通常会导致信息丢失,从而影响控制性能。本文将表明,与以往的预测控制方法相比,ENMSSPC-LQ控制结构在跟踪能力和抗干扰能力方面将进一步提高闭环控制性能。