Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
Biosens Bioelectron. 2017 Jan 15;87:501-507. doi: 10.1016/j.bios.2016.08.108. Epub 2016 Aug 31.
We describe the use of ssDNA functionalized silver nanoparticle (AgNP) probes for quantitative investigation of biorecognition and real time detection of biomolecular targets using nano-impact electrochemistry. The method is based on measurements of the individual collision events between ssDNA aptamer-functionalized AgNPs and a carbon fiber miroelectrode (CFME). Specific binding events of target analyte induced collision frequency changes enabling ultrasensitive detection of the aptamer target in a single step. These changes are assigned to the surface coverage of the NP by the ssDNA aptamers and subsequent conformational changes of the aptamer probe which affect the electron transfer between the NP and the electrode surface. The method enables sensitive and selective detection of ochratoxin A (OTA), chosen here as a model target, with a limit of detection of 0.05nM and a relative standard deviation of 4.9%. The study provides a means of characterizing bioconjugation of AgNPs with aptamers and assessing biomolecular recognition events with high sensitivity and without the use of exogenous reagents or enzyme amplification steps. This methodology can be broadly applicable to other bioconjugated systems, biosensing and related bioanalytical applications.
我们描述了 ssDNA 功能化银纳米粒子(AgNP)探针的使用,用于使用纳米冲击电化学定量研究生物识别和实时检测生物分子靶标。该方法基于 ssDNA 适体功能化 AgNP 与碳纤维微电极(CFME)之间的单个碰撞事件的测量。目标分析物的特定结合事件引起碰撞频率变化,从而能够在单个步骤中对适体靶标进行超灵敏检测。这些变化归因于 NP 上的 ssDNA 适体的表面覆盖率,以及适体探针的随后构象变化,这影响 NP 与电极表面之间的电子转移。该方法能够灵敏和选择性地检测黄曲霉毒素 A(OTA),这里选择 OTA 作为模型靶标,检测限为 0.05nM,相对标准偏差为 4.9%。该研究提供了一种表征 AgNP 与适体的生物缀合以及评估生物分子识别事件的方法,具有高灵敏度,并且无需使用外源试剂或酶扩增步骤。该方法可以广泛应用于其他生物共轭系统、生物传感和相关的生物分析应用。