Suppr超能文献

二维固体支撑基底上分子印迹膜的传感

Sensing with Molecularly Imprinted Membranes on Two-Dimensional Solid-Supported Substrates.

作者信息

Wang Lishuang, Li Nan, Zhang Xiaoyan, Bobrinetskiy Ivan, Gadjanski Ivana, Fu Wangyang

机构信息

School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.

BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia.

出版信息

Sensors (Basel). 2024 Aug 7;24(16):5119. doi: 10.3390/s24165119.

Abstract

Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.

摘要

自1990年以来,分子印迹膜(MIMs)一直是研究的热点,代表了将目标分子整合到膜结构中以用于前沿传感应用的一项突破。本文追溯了MIMs的发展历程,阐明了在二维固体支撑基质上制备和表征MIMs所采用的多种方法。然后,我们探讨了MIMs的原理和各种应用,特别是在包括电化学、表面增强拉曼散射(SERS)、表面等离子体共振(SPR)和石英晶体微天平(QCM)在内的新兴技术背景下的应用。此外,我们还阐述了依赖MIMs的离子敏感场效应晶体管(ISFET)生物传感器的独特特性,突出了即时检测生化传感器的显著进展和挑战。通过全面概述最新创新和未来发展方向,本文旨在激发MIM驱动传感技术领域的进一步探索和进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b1/11358988/1cfc0ad48685/sensors-24-05119-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验