Suppr超能文献

审视2000 - 2015年纳米技术的职业安全与健康挑战

Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015.

作者信息

Schulte P A, Roth G, Hodson L L, Murashov V, Hoover M D, Zumwalde R, Kuempel E D, Geraci C L, Stefaniak A B, Castranova V, Howard J

机构信息

National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.

School of Pharmacy, West Virginia University, Morgantown, WV, USA.

出版信息

J Nanopart Res. 2016 Jun;18:159. doi: 10.1007/s11051-016-3459-1. Epub 2016 Jun 14.

Abstract

Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required.

摘要

工程纳米材料在21世纪初大量进入商业领域。当时,人们普遍担忧纳米材料可能对健康产生严重影响。如今,大约15年过去了,有必要对保护纳米材料从业者免受潜在健康危害的研究和努力进行评估。本文提供并审视了主要功能领域(毒理学、计量学、暴露评估、工程控制和个人防护装备、风险评估、风险管理、医学监测和流行病学)的时间线,以确定对劳动者安全与健康的重大贡献。职业安全与健康领域已有效做出回应,以识别知识和实践中的差距,但仍需进一步研究,并在文中有所描述。目前,对于纳米颗粒毒理学的潜在机制、对劳动者的危害以及纳米材料的适当控制方法,人们有了更深入(尽管仍不完善)的理解,但统一的分析标准和暴露特征描述方法仍然缺乏。控制分级及类似策略的发展弥补了暴露和风险数据的不足,但尚不清楚这些方法的采用范围有多广。尽管流行病学研究和医学监测的重要性已得到认可,但实施工作因后勤问题而放缓。负责任地发展纳米技术需要在技术生命周期的各个阶段保护劳动者。在所评估的每个功能领域都取得了进展,但仍有更多工作要做。

相似文献

1
Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015.
J Nanopart Res. 2016 Jun;18:159. doi: 10.1007/s11051-016-3459-1. Epub 2016 Jun 14.
3
Applying Translational Science Approaches to Protect Workers Exposed to Nanomaterials.
Front Public Health. 2022 Jun 10;10:816578. doi: 10.3389/fpubh.2022.816578. eCollection 2022.
4
Occupational safety and health criteria for responsible development of nanotechnology.
J Nanopart Res. 2014;16(1):2153. doi: 10.1007/s11051-013-2153-9. Epub 2013 Dec 7.
5
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.
7
Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks.
Toxicol Appl Pharmacol. 2017 Aug 15;329:96-111. doi: 10.1016/j.taap.2017.05.025. Epub 2017 May 26.
8
The hierarchy of environmental health and safety practices in the U.S. nanotechnology workplace.
J Occup Environ Hyg. 2013;10(9):487-95. doi: 10.1080/15459624.2013.818231.
9
Overview of Risk Management for Engineered Nanomaterials.
J Phys Conf Ser. 2013;429. doi: 10.1088/1742-6596/429/1/012062.
10
Assessing the protection of the nanomaterial workforce.
Nanotoxicology. 2016 Sep;10(7):1013-9. doi: 10.3109/17435390.2015.1132347. Epub 2016 Feb 10.

引用本文的文献

3
Potential occupational hazards of additive manufacturing.
J Occup Environ Hyg. 2019 May;16(5):321-328. doi: 10.1080/15459624.2019.1591627. Epub 2019 Mar 25.
5
The asbestos-carbon nanotube analogy: An update.
Toxicol Appl Pharmacol. 2018 Dec 15;361:68-80. doi: 10.1016/j.taap.2018.06.027. Epub 2018 Jun 28.
6
Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.
Int J Environ Res Public Health. 2016 Sep 1;13(9):871. doi: 10.3390/ijerph13090871.

本文引用的文献

1
Assessing the first wave of epidemiological studies of nanomaterial workers.
J Nanopart Res. 2015 Oct;17:413. doi: 10.1007/s11051-015-3219-7. Epub 2015 Oct 19.
2
Development of risk-based nanomaterial groups for occupational exposure control.
J Nanopart Res. 2012 Sep;14:1029. doi: 10.1007/s11051-012-1029-8. Epub 2012 Aug 7.
3
Occupational and Environmental Health Effects of Nanomaterials.
Biomed Res Int. 2015;2015:789312. doi: 10.1155/2015/789312. Epub 2015 Jun 10.
4
Occupational exposure to nanoparticles at commercial photocopy centers.
J Hazard Mater. 2015 Nov 15;298:351-60. doi: 10.1016/j.jhazmat.2015.06.021. Epub 2015 Jun 17.
5
Risk Assessment of the Carbon Nanotube Group.
Risk Anal. 2015 Oct;35(10):1940-56. doi: 10.1111/risa.12394. Epub 2015 May 5.
7
Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.
Ann Occup Hyg. 2015 Jul;59(6):705-23. doi: 10.1093/annhyg/mev020. Epub 2015 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验