Suppr超能文献

从脑部结构成像中解码中风后的运动功能

Decoding post-stroke motor function from structural brain imaging.

作者信息

Rondina Jane M, Filippone Maurizio, Girolami Mark, Ward Nick S

机构信息

Sobell Department of Motor Neuroscience, Institute of Neurology, University College London, UK.

Department of Data Science, EURECOM, France.

出版信息

Neuroimage Clin. 2016 Aug 2;12:372-80. doi: 10.1016/j.nicl.2016.07.014. eCollection 2016.

Abstract

Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes from early post-stroke structural brain imaging.

摘要

基于神经影像数据的临床研究受益于机器学习方法,这些方法能够提供个性化预测,并考虑大脑中信息单元之间的相互作用。将机器学习应用于结构成像以研究涉及脑损伤的疾病带来了额外的挑战,特别是在中风等病症中,因为患者之间病变特征的变异性很大。以将脑损伤信息转化为用作学习算法输入的特征的方式从解剖图像中提取数据仍然是一个悬而未决的问题。从脑损伤中获取区域信息最常见的方法之一是获得每个区域的病变负荷(即解剖结构中被认为受损的体素比例)。然而,尚未进行系统评估来将这种方法与使用体素模式(即把每个体素视为单个特征)进行比较。在本文中,我们仅基于来自结构MRI的数据,应用高斯过程回归对50名慢性中风患者的运动评分进行解码,比较了这两种方法。对于这两种方法,我们比较了划定解剖区域的不同方式:来自解剖图谱的感兴趣区域、皮质脊髓束、通过健康对照中的运动任务功能磁共振成像分析获得的掩码以及使用病变 - 症状映射选择的区域。我们的分析表明,通过代表病变概率的体素模式提取特征比量化每个区域的病变负荷产生了更好的结果。特别是,在比较的划定解剖区域的不同方式中,结合一系列皮质和皮质下运动区域以及皮质脊髓束获得了最佳性能。这些结果将为从中风后早期结构脑成像预测长期运动结果的适当方法提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/035c/4995603/8bc31bf978ef/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验