School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia; Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia.
Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia.
Sci Total Environ. 2016 Dec 15;573:831-840. doi: 10.1016/j.scitotenv.2016.08.172. Epub 2016 Sep 3.
Sedimentary rare earth element (REE) signatures can provide powerful insights into nearshore biogeochemical processes and anthropogenic influences. Despite this, there is limited research investigating REE behaviour in sediments influenced by coastal acid sulfate soils (CASS). Here, we explore REE abundance and fractionation in intertidal mangrove sediments that received CASS drainage for ~15-20y within the Hastings Catchment in NSW, Australia. Sediments close to the CASS discharge point (<200m) were compared with those further downstream (1300-1600m), and at a nearby control site. Average ΣREE concentrations were highest near the CASS discharge point (148-186mg/kg), and decreased with distance downstream (111-146mg/kg) and in control sediments (70mg/kg). Reactive Fe concentrations (defined by 1M HCl extractability) were also significantly higher in surface sediments (0-6cm) near the CASS discharge point. Middle-REE (MREE) enrichments dominated fractionation patterns at all sites (>1.5), with a high proportion (63-100%) of REEs residing in the reactive (1M HCl extractable) sediment fraction. Interestingly, the degree of MREE enrichment was significantly correlated with Ce anomalies (r=0.72, P<0.001) and the heavy-REE (HREE) to light-REE (LREE) ratios (HREE/LREE, r=0.74, P<0.001) in the reactive sediment fraction, only in those sites situated closest to the CASS drainage. The observed high MREE enrichments, positive Ce anomalies (>1) and HREE/LREE ratios (>1) are consistent with reactive Fe(III) oxides/oxyhydroxides driving REE retention in these sediments. This study indicates that CASS drainage alters REE signatures in receiving sediments by (1) providing a source of REEs, thereby enhancing sedimentary REE concentrations, and (2) causing accumulation of reactive Fe(III) phases with a high affinity for REEs. Together, these two factors drive the development of distinctive REE signatures in CASS-impacted sediments. The recognition of such signatures may provide a promising tool for identifying coastal sediments receiving anthropogenic CASS drainage inputs.
沉积稀土元素 (REE) 特征可以为近岸生物地球化学过程和人为影响提供有力的见解。尽管如此,对于受海岸酸性硫酸盐土壤 (CASS) 影响的沉积物中 REE 行为的研究仍然有限。在这里,我们探索了澳大利亚新南威尔士州黑斯廷斯流域内受 CASS 排水影响约 15-20 年的潮间带红树林沉积物中的 REE 丰度和分馏。将靠近 CASS 排放点 (<200m) 的沉积物与下游更远的沉积物 (1300-1600m) 和附近的对照点进行比较。ΣREE 浓度平均值在靠近 CASS 排放点处最高(148-186mg/kg),随着距离下游(111-146mg/kg)和对照沉积物(70mg/kg)的增加而降低。在靠近 CASS 排放点的表层沉积物 (0-6cm) 中,反应性 Fe 浓度(定义为 1M HCl 可提取性)也明显更高。在所有地点 (>1.5),中重稀土 (MREE) 富集都主导分馏模式,REE 中有很大比例 (63-100%) 存在于反应性(1M HCl 可提取)沉积物中。有趣的是,MREE 富集程度与 Ce 异常(r=0.72,P<0.001)和重稀土 (HREE) 与轻稀土 (LREE) 比(HREE/LREE,r=0.74,P<0.001)显著相关仅在最靠近 CASS 排水的那些地点。观察到的高 MREE 富集、正 Ce 异常 (>1) 和 HREE/LREE 比 (>1) 与反应性 Fe(III) 氧化物/氢氧化物在这些沉积物中保留 REE 一致。这项研究表明,CASS 排水通过以下两种方式改变接收沉积物中的 REE 特征:(1)提供 REE 源,从而提高沉积物中 REE 的浓度,以及(2)导致对 REE 具有高亲和力的反应性 Fe(III) 相的积累。这两个因素共同导致 CASS 影响沉积物中独特的 REE 特征的发展。识别这些特征可能为识别接收人为 CASS 排水输入的沿海沉积物提供一种有前途的工具。