IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; FCUL - Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
IPMA - Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
Sci Total Environ. 2018 Dec 1;643:1117-1126. doi: 10.1016/j.scitotenv.2018.06.291. Epub 2018 Jul 4.
Salt marshes act as natural deposits of different metals (e.g. heavy-metals), while halophyte plants are known to retain and accumulate them in the different tissues. Scarce data exists on accumulation, partition and fractionation of YREE in these plants. To study the relationship between halophyte plants and YREE, contents of these metals were determined by ICP-MS in sediment, and in the different plants organs, from Rosário's salt marsh, in Tagus estuary (SW Europe). Results show significant differences (p < 0.001) in YREE contents between sediments. In non-colonised sediment Y was lower (5.0-18 mg·kg) compared to the Sarcocornia fruticosa and Spartina maritima sediment cores (19-26 and 20-26 mg·kg, respectively). The same was observed for ΣREE, with lower values in non-colonised sediment (32-138 mg·kg), while colonised ones presented higher contents (146-174 and 151-190 mg·kg, for S. fruticosa and S. maritima, respectively). These significant differences (p < 0.05) are explained by the sediments' nature. Yttrium and ΣREE Al-normalised ratios in non-colonised sediment ranged from 1.5 to 2.3 and 11 to 13, respectively. The colonised sediments revealed significant higher ratios (particularly for ΣREE/Al ratios; p < 0.001), varying from Y/Al: 1.8-2.3 and ΣREE: 13-16 for S. fruticosa, and Y/Al: 1.4-2.3 and ΣREE: 12-18, for S. maritima. Results suggest that these plants may promote YREE enrichment in the sediments. No differences in fractionation patterns among sediments and in both species roots were found, but fractionation was different from those in the sediment, with similar middle-REE (MREE) enrichment and no light-REE (LREE) and heavy-REE (HREE) fractionation. No evidence of YREE transfer to aboveground organs was observed. Different fractionation patterns in stems and leaves were registered, with clear enrichment of LREE relative to HREE and an increase in the MREE enrichment. Therefore, these plants showed low ability to accumulate and translocate YREE but may promote its enrichment in the sediments.
盐沼是不同金属(如重金属)的天然沉积物,而盐生植物已知能在不同组织中保留和积累这些金属。关于这些植物中钇元素(YREE)的积累、分配和分馏,数据很少。为了研究盐生植物与 YREE 之间的关系,我们通过电感耦合等离子体质谱法(ICP-MS)测定了塔古斯河口罗萨里奥盐沼沉积物和不同植物器官中的这些金属含量。结果表明,沉积物中 YREE 含量存在显著差异(p<0.001)。在未被生物定殖的沉积物中,Y 的含量较低(5.0-18mg·kg),而在被生物定殖的盐角草和互花米草沉积物核心中,Y 的含量较高(分别为 19-26 和 20-26mg·kg)。ΣREE 的情况也是如此,未被生物定殖的沉积物中 ΣREE 的含量较低(32-138mg·kg),而被生物定殖的沉积物中 ΣREE 的含量较高(盐角草和互花米草分别为 146-174 和 151-190mg·kg)。这些显著差异(p<0.05)可以用沉积物的性质来解释。未被生物定殖的沉积物中 Y 和 ΣREE 与 Al 的比值范围分别为 1.5-2.3 和 11-13。被生物定殖的沉积物中这些比值显著较高(特别是 ΣREE/Al 比值,p<0.001),盐角草中 Y/Al 比值为 1.8-2.3,ΣREE/Al 比值为 13-16,互花米草中 Y/Al 比值为 1.4-2.3,ΣREE/Al 比值为 12-18。这些结果表明,这些植物可能促进了 YREE 在沉积物中的富集。在两种植物的根中,均未发现沉积物之间和两种物种之间的分馏模式存在差异,但分馏模式与沉积物不同,其中中重稀土(MREE)有明显富集,轻重稀土(LREE 和 HREE)没有分馏。没有证据表明 YREE 被转移到地上器官。在茎和叶中观察到不同的分馏模式,LREE 相对于 HREE 明显富集,MREE 富集度增加。因此,这些植物积累和转运 YREE 的能力较低,但可能促进其在沉积物中的富集。