Department of Physics, Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland.
Department of Chemistry, National University of Singapore , 3 Science Drive 3, Singapore 117543.
Acc Chem Res. 2016 Oct 18;49(10):2061-2069. doi: 10.1021/acs.accounts.6b00256. Epub 2016 Sep 6.
This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.
本文描述了在原子水平设计、合成、物理化学特性表征以及宏观电测试方面的研究成果,这些研究对象是基于二茂铁官能化烷硫醇分子的分子器件,它们是分子二极管,旨在确定并解决导致漏电流的失效模式。由于二茂铁头基与烷烃棒之间的尺寸不匹配,导致在硬币金属上形成蜡状的高度动态自组装单层(SAM),这些 SAM 在其电学性质上表现出显著的原子尺度敏感性。我们的研究结果表明,分子隧道结器件为研究无机衬底上 SAM 的电子和超分子结构提供了极好的试验台。通过将这些 SAM 与共晶“EGaIn”合金顶电极接触,我们设计了形式为电极-SAM-电极的高度稳定、长寿命的分子开关,其整流比高达 3 个数量级。随附的概要图显示了计算出的 SAM 堆积结构,说明了分子的棒棒糖形状赋予了动态 SAM 超分子结构,以及为了形成良好的基于 SAM 的器件,必须控制分子-电极范德华(vdW)接触。在本报告中,我们首先追溯了基于 SAM 的电子器件的发展,并使用能级图来合理化其操作。我们描述了使用近边缘 X 射线吸收精细结构光谱、循环伏安法和 X 射线光电子能谱以及大量的电测量来测量器件特性。我们讨论了如何从这些组合的实验/模拟协同设计研究中获得的数据证明了对器件的超分子和电子结构的控制,通过调整奇偶效应来优化分子的固有堆积趋势,从而最小化结中的漏电流。虽然创建原子级光滑的电极仍然非常昂贵,但现在已经有可能,并且我们讨论了使用仅通过动态 SAM 结构才能实现的协同分子-电极接触来掩盖电极缺陷的进展。最后,总结并讨论了 SAM 器件同时实现高灵敏度和原子敏感的电开关的独特能力。虽然将这些结构用作实际的电子器件仍然极具挑战性,但我们推测了进一步提高电子和超分子结构的科学和技术进步,以期获得具有(非常)大的、可重复的整流比的高产率长寿命分子器件。