Peng Wuxian, Chen Ningyue, Wang Caiyun, Xie Yu, Qiu Shengzhe, Li Shuwei, Zhang Liang, Li Yuan
Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
Center for Combustion Energy, Tsinghua University, Beijing, 100084, China.
Angew Chem Int Ed Engl. 2023 Aug 21;62(34):e202307733. doi: 10.1002/anie.202307733. Epub 2023 Jul 17.
Better control of molecule-electrode coupling (Γ) to minimize leakage current is an effective method to optimize the functionality of molecular diodes. Herein we embedded 5 isomers of phenypyridyl derivatives, each with an N atom placed at a different position, in two electrodes to fine-tune Γ between self-assembled monolayers (SAMs) and the top electrode of EGaIn (eutectic Ga-In terminating in Ga O ). Combined with electrical tunnelling results, characterizations of electronic structures, single-level model fittings, and DFT calculations, we found that the values of Γ of SAMs formed by these isomers could be regulated by nearly 10 times, thereby contributing to the leakage current changing over about two orders of magnitude and switching the isomers from resistors to diodes with a rectification ratio (r =|J(+1.5 V)/J(-1.5 V)|) exceeding 200. We demonstrated that the N atom placement can be chemically engineered to tune the resistive and rectifying properties of the molecular junctions, making it possible to convert molecular resistors into rectifiers. Our study provides fundamental insights into the role of isomerism in molecular electronics and offers a new avenue for designing functional molecular devices.
更好地控制分子 - 电极耦合(Γ)以最小化漏电流是优化分子二极管功能的有效方法。在此,我们将5种苯吡啶衍生物异构体(每个异构体中的N原子位于不同位置)嵌入两个电极中,以微调自组装单分子层(SAMs)与镓铟合金(GaIn,以GaO终止的共晶镓铟)顶部电极之间的Γ。结合电隧穿结果、电子结构表征、单能级模型拟合和密度泛函理论(DFT)计算,我们发现由这些异构体形成的SAMs的Γ值可被调节近10倍,从而使漏电流变化约两个数量级,并将异构体从电阻器转变为整流比(r = |J(+1.5 V)/J(-1.5 V)|)超过200的二极管。我们证明,可以通过化学工程方法调整N原子的位置来调节分子结的电阻和整流特性,从而有可能将分子电阻器转变为整流器。我们的研究为异构体在分子电子学中的作用提供了基本见解,并为设计功能性分子器件提供了新途径。