Suppr超能文献

纳米结构氧化铟涂覆硅纳米线阵列:一种用于太阳能燃料的杂化光热/光化学方法。

Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

机构信息

Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.

Department of Mechanical Engineering, Lassonde School of Engineering, York University , Toronto, Ontario M3J 1P3, Canada.

出版信息

ACS Nano. 2016 Sep 27;10(9):9017-25. doi: 10.1021/acsnano.6b05416. Epub 2016 Sep 12.

Abstract

The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

摘要

太阳能燃料领域旨在通过驱动有用的分子转化来利用丰富的太阳能。特别感兴趣的是光驱动将温室气体 CO2 转化为碳基燃料和化学原料,最终目标是为传统化石燃料提供可持续的替代品。非化学计量的、羟基化的氧化铟纳米粒子,记为 In2O3-x(OH)y,已被证明在模拟太阳光照射下通过逆水气变换反应将 CO2 还原为 CO 时是有效的光催化剂。然而,氧化铟相对较宽的带隙(2.9 eV)限制了可利用的太阳辐照度的一部分,约为 9%,并且所需的升高的反应温度(150-190°C)降低了该过程的整体能量效率。在此,我们报告了一种由垂直排列的硅纳米线(SiNW)支撑的均匀涂覆的 In2O3-x(OH)y 纳米粒子组成的混合催化剂,该催化剂利用绝大多数的太阳辐照度同时产生光生载流子和所需的热量,以 22.0 μmol·gcat(-1)·h(-1)的速率将 CO2 还原为 CO。此外,由于最小化的反射损失和在 SiNW 支撑内增强的光捕获,In2O3-x(OH)y/SiNW 薄膜的光收集效率得到了提高,导致在相同的在粗糙化的玻璃衬底上制备的 In2O3-x(OH)y 薄膜的光催化转化速率提高了约 6 倍。这种 In2O3-x(OH)y/SiNW 混合催化剂能够同时利用宽带太阳辐射提供的光和热能来驱动 CO2 还原反应,这代表了在太阳能燃料领域适用于广泛催化剂的一般性进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验