Department of Materials Science and Engineering, University of Toronto , 184 College Street, Suite 140, Toronto, Ontario M5S 3E4, Canada.
Department of Chemistry, University of Toronto , 80 St. George Street, Rm 326, Toronto, Ontario M5S 3E4, Canada.
J Am Chem Soc. 2016 Feb 3;138(4):1206-14. doi: 10.1021/jacs.5b10179. Epub 2016 Jan 25.
In this study we investigated, theoretically and experimentally, the unique photoactive behavior of pristine and defected indium oxide surfaces providing fundamental insights into their excited state properties as well as an explanation for the experimentally observed enhanced activity of defected indium oxide surfaces for the gas-phase reverse water gas shift reaction, CO2 + H2 + hν→ CO + H2O in the light compared to the dark. To this end, a detailed excited-state study of pristine and defected forms of indium oxide (In2O3, In2O3-x, In2O3(OH)y and In2O3-x(OH)y) surfaces was performed using time dependent density functional theory (TDDFT) calculations, the results of which were supported experimentally by transient absorption spectroscopy and photoconductivity measurements. It was found that the surface frustrated Lewis pairs (FLPs) created by a Lewis acidic coordinately unsaturated surface indium site proximal to an oxygen vacancy and a Lewis basic surface hydroxide site in In2O3-x(OH)y become more acidic and basic and hence more active in the ES compared to the GS. This provides a theoretical mechanism responsible for the enhanced activity and reduced activation energy of the photochemical reverse water gas shift reaction observed experimentally for In2O3-x(OH)y compared to the thermochemical reaction. This fundamental insight into the role of photoexcited surface FLPs for catalytic CO2 reduction could lead to improved photocatalysts for solar fuel production.
在这项研究中,我们从理论和实验两方面研究了原始和缺陷氧化铟表面的独特光活性行为,为深入了解它们的激发态性质提供了基础,并解释了实验中观察到的缺陷氧化铟表面在光下相对于暗下对气相逆水煤气变换反应(CO2 + H2 + hν→ CO + H2O)具有增强活性的原因。为此,我们使用时间相关密度泛函理论(TDDFT)计算对原始和缺陷形式的氧化铟(In2O3、In2O3-x、In2O3(OH)y 和 In2O3-x(OH)y)表面进行了详细的激发态研究,实验结果通过瞬态吸收光谱和光电导测量得到了支持。结果发现,在 In2O3-x(OH)y 中,路易斯酸配位不饱和表面铟位点与氧空位以及路易斯碱表面氢氧化物位点附近形成的表面受阻路易斯对(FLP)在 ES 中比在 GS 中更具酸性和碱性,因此更具活性。这为实验中观察到的与热化学反应相比,In2O3-x(OH)y 光化学逆水煤气变换反应的增强活性和降低的活化能提供了理论机制。对光激发表面 FLP 促进 CO2 还原催化作用的这一基本认识,可能会为太阳能燃料生产带来性能更优的光催化剂。