Jeffers Abra M, Sieh Weiva, Lipson Jafi A, Rothstein Joseph H, McGuire Valerie, Whittemore Alice S, Rubin Daniel L
From the Departments of Management Science and Engineering (A.M.J.) and Medicine (Biomedical Informatics Research) (D.L.R.), Stanford University, Stanford, Calif; and Departments of Health Research and Policy (W.S., J.H.R., V.M., A.S.W.) and Radiology (J.A.L., D.L.R.), Stanford University School of Medicine, 1201 Welch Rd, Office P285, Stanford, CA 94305.
Radiology. 2017 Feb;282(2):348-355. doi: 10.1148/radiol.2016152062. Epub 2016 Sep 5.
Purpose To compare three metrics of breast density on full-field digital mammographic (FFDM) images as predictors of future breast cancer risk. Materials and Methods This institutional review board-approved study included 125 women with invasive breast cancer and 274 age- and race-matched control subjects who underwent screening FFDM during 2004-2013 and provided informed consent. The percentage of density and dense area were assessed semiautomatically with software (Cumulus 4.0; University of Toronto, Toronto, Canada), and volumetric percentage of density and dense volume were assessed automatically with software (Volpara; Volpara Solutions, Wellington, New Zealand). Clinical Breast Imaging Reporting and Data System (BI-RADS) classifications of breast density were extracted from mammography reports. Odds ratios and 95% confidence intervals (CIs) were estimated by using conditional logistic regression stratified according to age and race and adjusted for body mass index, parity, and menopausal status, and the area under the receiver operating characteristic curve (AUC) was computed. Results The adjusted odds ratios and 95% CIs for each standard deviation increment of the percentage of density, dense area, volumetric percentage of density, and dense volume were 1.61 (95% CI: 1.19, 2.19), 1.49 (95% CI: 1.15, 1.92), 1.54 (95% CI: 1.12, 2.10), and 1.41 (95% CI: 1.11, 1.80), respectively. Odds ratios for women with extremely dense breasts compared with those with scattered areas of fibroglandular density were 2.06 (95% CI: 0.85, 4.97) and 2.05 (95% CI: 0.90, 4.64) for BI-RADS and Volpara density classifications, respectively. Clinical BI-RADS was more accurate (AUC, 0.68; 95% CI: 0.63, 0.74) than Volpara (AUC, 0.64; 95% CI: 0.58, 0.70) and continuous measures of percentage of density (AUC, 0.66; 95% CI: 0.60, 0.72), dense area (AUC, 0.66; 95% CI: 0.60, 0.72), volumetric percentage of density (AUC, 0.64; 95% CI: 0.58, 0.70), and density volume (AUC, 0.65; 95% CI: 0.59, 0.71), although the AUC differences were not statistically significant. Conclusion Mammographic density on FFDM images was positively associated with breast cancer risk by using the computer assisted methods and BI-RADS. BI-RADS classification was as accurate as computer-assisted methods for discrimination of patients from control subjects. RSNA, 2016.
目的 比较全视野数字化乳腺摄影(FFDM)图像上的三种乳腺密度指标,作为未来乳腺癌风险的预测指标。材料与方法 本研究经机构审查委员会批准,纳入了125例浸润性乳腺癌女性患者和274例年龄及种族匹配的对照受试者,这些受试者在2004年至2013年期间接受了筛查FFDM检查并签署了知情同意书。使用软件(Cumulus 4.0;加拿大多伦多大学)半自动评估密度百分比和致密面积,使用软件(Volpara;新西兰惠灵顿Volpara Solutions公司)自动评估密度体积百分比和致密体积。从乳腺摄影报告中提取乳腺密度的临床乳腺影像报告和数据系统(BI-RADS)分类。采用条件逻辑回归,根据年龄和种族分层,并对体重指数、生育史和绝经状态进行校正,估计比值比和95%置信区间(CI),并计算受试者操作特征曲线(AUC)下的面积。结果 密度百分比、致密面积、密度体积百分比和致密体积每增加一个标准差的校正比值比和95%CI分别为1.61(95%CI:1.19,2.19)、1.49(95%CI:1.15,1.92)、1.54(95%CI:1.12,2.10)和1.41(95%CI:1.11,1.80)。与散在纤维腺体密度区域的女性相比,乳腺极度致密的女性的比值比,对于BI-RADS和Volpara密度分类分别为2.06(95%CI:0.85,4.97)和2.05(95%CI:0.90,4.64)。临床BI-RADS比Volpara(AUC,0.64;95%CI:0.58,0.70)以及密度百分比(AUC,0.66;95%CI:0.60,0.72)、致密面积(AUC,0.66;95%CI:0.60,0.72)、密度体积百分比(AUC,0.64;95%CI:(0.58,0.70)和密度体积(AUC,0.65;95%CI:0.59,0.71)的连续测量更准确,尽管AUC差异无统计学意义。结论 使用计算机辅助方法和BI-RADS,FFDM图像上的乳腺摄影密度与乳腺癌风险呈正相关。在区分患者与对照受试者方面,BI-RADS分类与计算机辅助方法一样准确。RSNA,2016年