García Barrado Leandro, Coart Els, Burzykowski Tomasz
Hasselt University, I-BioStat, Agoralaan, B-3590 Diepenbeek, Belgium.
International Drug Development Institute (IDDI), Avenue Provinciale 30, 1340 Louvain-la-Neuve, Belgium.
Biometrics. 2017 Jun;73(2):646-655. doi: 10.1111/biom.12583. Epub 2016 Sep 6.
Estimating biomarker-index accuracy when only imperfect reference-test information is available is usually performed under the assumption of conditional independence between the biomarker and imperfect reference-test values. We propose to define a latent normally-distributed tolerance-variable underlying the observed dichotomous imperfect reference-test results. Subsequently, we construct a Bayesian latent-class model based on the joint multivariate normal distribution of the latent tolerance and biomarker values, conditional on latent true disease status, which allows accounting for conditional dependence. The accuracy of the continuous biomarker-index is quantified by the AUC of the optimal linear biomarker-combination. Model performance is evaluated by using a simulation study and two sets of data of Alzheimer's disease patients (one from the memory-clinic-based Amsterdam Dementia Cohort and one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database). Simulation results indicate adequate model performance and bias in estimates of the diagnostic-accuracy measures when the assumption of conditional independence is used when, in fact, it is incorrect. In the considered case studies, conditional dependence between some of the biomarkers and the imperfect reference-test is detected. However, making the conditional independence assumption does not lead to any marked differences in the estimates of diagnostic accuracy.
当仅有不完美的参考测试信息可用时,估计生物标志物指数的准确性通常是在生物标志物与不完美参考测试值之间条件独立的假设下进行的。我们建议定义一个潜在的正态分布容忍变量,该变量是观察到的二分法不完美参考测试结果的基础。随后,我们基于潜在容忍度和生物标志物值的联合多元正态分布构建一个贝叶斯潜在类别模型,以潜在的真实疾病状态为条件,这允许考虑条件依赖性。连续生物标志物指数的准确性通过最优线性生物标志物组合的AUC来量化。通过模拟研究和两组阿尔茨海默病患者的数据(一组来自基于记忆诊所的阿姆斯特丹痴呆队列,另一组来自阿尔茨海默病神经影像倡议(ADNI)数据库)来评估模型性能。模拟结果表明,当使用条件独立假设(而实际上该假设不正确)时,模型性能足够,但诊断准确性测量估计存在偏差。在所考虑的案例研究中,检测到一些生物标志物与不完美参考测试之间存在条件依赖性。然而,做出条件独立假设并不会导致诊断准确性估计出现任何显著差异。