Suppr超能文献

基于矩阵的活性模式分类作为一种表征高通量筛选衍生的酶抑制剂的新方法。

Matrix-Based Activity Pattern Classification as a Novel Method for the Characterization of Enzyme Inhibitors Derived from High-Throughput Screening.

作者信息

Auld Douglas S, Jimenez Marta, Yue Kimberley, Busby Scott, Chen Yu-Chi, Bowes Scott, Wendel Greg, Smith Thomas, Zhang Ji-Hu

机构信息

1 Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA.

2 National Center for Advancing Translational Sciences, Bethesda, MD, USA.

出版信息

J Biomol Screen. 2016 Dec;21(10):1075-1089. doi: 10.1177/1087057116667255. Epub 2016 Sep 27.

Abstract

One of the central questions in the characterization of enzyme inhibitors is determining the mode of inhibition (MOI). Classically, this is done with a number of low-throughput methods in which inhibition models are fitted to the data. The ability to rapidly characterize the MOI for inhibitors arising from high-throughput screening in which hundreds to thousands of primary inhibitors may need to be characterized would greatly help in lead selection efforts. Here we describe a novel method for determining the MOI of a compound without the need for curve fitting of the enzyme inhibition data. We provide experimental data to demonstrate the utility of this new high-throughput MOI classification method based on nonparametric analysis of the activity derived from a small matrix of substrate and inhibitor concentrations (e.g., from a 4 × 4 matrix). Lists of inhibitors from four different enzyme assays are studied, and the results are compared with the previously described IC-shift method for MOI classification. The MOI results from this method are in good agreement with the known MOI and compare favorably with those from the IC-shift method. In addition, we discuss some advantages and limitations of the method and provide recommendations for utilization of this MOI classification method.

摘要

在酶抑制剂特性描述中,核心问题之一是确定抑制模式(MOI)。传统上,这是通过一些低通量方法来完成的,在这些方法中,抑制模型被拟合到数据上。对于高通量筛选产生的抑制剂,能够快速表征其MOI(其中可能需要对数百至数千种初级抑制剂进行表征)将极大地有助于先导化合物的筛选工作。在此,我们描述了一种无需对酶抑制数据进行曲线拟合即可确定化合物MOI的新方法。我们提供实验数据来证明这种基于对来自底物和抑制剂浓度小矩阵(例如,4×4矩阵)的活性进行非参数分析的新高通量MOI分类方法的实用性。研究了来自四种不同酶测定的抑制剂列表,并将结果与先前描述的用于MOI分类的IC位移方法进行比较。该方法得到的MOI结果与已知的MOI高度一致,并且与IC位移方法得到的结果相比更具优势。此外,我们讨论了该方法的一些优点和局限性,并为该MOI分类方法的应用提供了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验