Bulley Simon J, Droubi Alaa, Clarke Jonathan H, Anderson Karen E, Stephens Len R, Hawkins Phillip T, Irvine Robin F
Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom;
Inositide Laboratory, Babraham Institute, Cambridge CB22 4AT, United Kingdom.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10571-6. doi: 10.1073/pnas.1522478113. Epub 2016 Sep 6.
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are enigmatic lipid kinases with physiological functions that are incompletely understood, not the least because genetic deletion and cell transfection have led to contradictory data. Here, we used the genetic tractability of DT40 cells to create cell lines in which endogenous PI5P4Kα was removed, either stably by genetic deletion or transiently (within 1 h) by tagging the endogenous protein genomically with the auxin degron. In both cases, removal impacted Akt phosphorylation, and by leaving one PI5P4Kα allele present but mutating it to be kinase-dead or have PI4P 5-kinase activity, we show that all of the effects on Akt phosphorylation were dependent on the ability of PI5P4Kα to synthesize phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] rather than to remove PI5P. Although stable removal of PI5P4Kα resulted in a pronounced decrease in Akt phosphorylation at Thr308 and Ser473, in part because of reduced plasma membrane PIP3, its acute removal led to an increase in Akt phosphorylation only at Ser473. This process invokes activation primarily of mammalian target of rapamycin complex 2 (mTORC2), which was confirmed by increased phosphorylation of other mTORC2 substrates. These findings establish PI5P4Kα as a kinase that synthesizes a physiologically relevant pool of PI(4,5)P2 and as a regulator of mTORC2, and show a phenomenon similar to the "butterfly effect" described for phosphatidylinositol 3-kinase Iα [Hart JR, et al. (2015) Proc Natl Acad Sci USA 112(4):1131-1136], whereby through apparently the same underlying mechanism, the removal of a protein's activity from a cell can have widely divergent effects depending on the time course of that removal.
磷脂酰肌醇5-磷酸4-激酶(PI5P4Ks)是一类神秘的脂质激酶,其生理功能尚未完全明确,这主要是因为基因敲除和细胞转染实验得出了相互矛盾的数据。在此,我们利用DT40细胞的遗传易操作性构建了细胞系,通过基因敲除稳定去除内源性PI5P4Kα,或通过基因组标记内源性蛋白与生长素降解子在1小时内瞬时去除PI5P4Kα。在这两种情况下,PI5P4Kα的去除均影响Akt磷酸化,并且通过保留一个PI5P4Kα等位基因但将其突变为激酶失活或具有PI4P 5-激酶活性,我们发现所有对Akt磷酸化的影响均取决于PI5P4Kα合成磷脂酰肌醇(4,5)-二磷酸[PI(4,5)P2]的能力,而非去除PI5P的能力。虽然稳定去除PI5P4Kα导致Akt在Thr308和Ser473位点的磷酸化显著降低,部分原因是质膜PIP3减少,但其急性去除仅导致Akt在Ser473位点的磷酸化增加。这一过程主要激活了雷帕霉素复合物2(mTORC2)的哺乳动物靶点,其他mTORC2底物磷酸化增加证实了这一点。这些发现确立了PI5P4Kα作为一种合成具有生理相关性的PI(4,5)P2池的激酶以及mTORC2的调节剂,并显示出一种类似于磷脂酰肌醇3-激酶Iα所描述的“蝴蝶效应”的现象[Hart JR等人(2015年)《美国国家科学院院刊》112(4):1131 - 1136],即通过明显相同的潜在机制,从细胞中去除一种蛋白质的活性可能会根据去除的时间进程产生广泛不同的影响。