Suppr超能文献

编码靶向II类主要组织相容性复合体抗原的DNA疫苗可诱导流感特异性CD8(+) T细胞反应,从而加快流感疾病的痊愈。

DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

作者信息

Lambert Laura, Kinnear Ekaterina, McDonald Jacqueline U, Grodeland Gunnveig, Bogen Bjarne, Stubsrud Elisabeth, Lindeberg Mona M, Fredriksen Agnete Brunsvik, Tregoning John S

机构信息

Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK.

K. G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo , Oslo , Norway.

出版信息

Front Immunol. 2016 Aug 23;7:321. doi: 10.3389/fimmu.2016.00321. eCollection 2016.

Abstract

Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

摘要

目前的流感疫苗有效但并不完美,无法抵御新出现的病毒株,并且需要季节性接种以预防新毒株。改进流感疫苗的关键一步是增进我们对疫苗诱导的免疫保护的理解。虽然抗体发挥着保护作用这一点很明确,但疫苗诱导的CD8(+) T细胞也可以增强保护作用。为了进一步探究CD8(+) T细胞的作用,我们使用了一种DNA疫苗,该疫苗编码与免疫细胞靶向模块二聚化的抗原。与单独使用蛋白疫苗相比,在异源初免-加强方案中用DNA疫苗免疫CB6F1小鼠,并结合季节性蛋白疫苗,可改善流感疾病的转归。这种改善的疾病转归依赖于CD8(+) T细胞。然而,单独诱导CD8(+) T细胞的DNA疫苗方案并无保护作用,也不能增强蛋白疫苗提供的保护。所使用的MHC靶向模块是一种针对小鼠BALB/c品系的抗I-E(d)单链抗体。为了测试MHC靶向的作用,我们比较了BALB/c、C57BL/6小鼠以及这两个品系的F1杂交种(CB6F1)之间的反应。BALB/c小鼠得到了保护,C57BL/6小鼠未得到保护,而F1杂交种具有中间表型;这表明抗原靶向在免疫反应中很重要。基于这些发现,并与其他使用不同疫苗的研究一致,我们得出结论,除了抗体之外,诱导具有保护作用的CD8反应在未来的流感疫苗中也很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b46/4993793/4fdaac08e99a/fimmu-07-00321-g001.jpg

相似文献

3
Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus.
Eur J Immunol. 2015 Feb;45(2):624-35. doi: 10.1002/eji.201445080. Epub 2014 Dec 28.
6
DNA vaccines encoding DEC205-targeted antigens: immunity or tolerance?
Immunology. 2015 Aug;145(4):519-33. doi: 10.1111/imm.12467. Epub 2015 Apr 30.
7
Polarizing T and B Cell Responses by APC-Targeted Subunit Vaccines.
Front Immunol. 2015 Jul 20;6:367. doi: 10.3389/fimmu.2015.00367. eCollection 2015.
8
[Novel vaccines against M. tuberculosis].
Kekkaku. 2006 Dec;81(12):745-51.
10
Targeting antigen to MHC Class I and Class II antigen presentation pathways for malaria DNA vaccines.
Immunol Lett. 2007 Aug 15;111(2):92-102. doi: 10.1016/j.imlet.2007.05.007. Epub 2007 Jun 18.

引用本文的文献

1
Neuraminidase delivered as an APC-targeted DNA vaccine induces protective antibodies against influenza.
Mol Ther. 2023 Jul 5;31(7):2188-2205. doi: 10.1016/j.ymthe.2023.03.012. Epub 2023 Mar 16.
2
Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets.
Oxf Open Immunol. 2022 Jun 27;3(1):iqac004. doi: 10.1093/oxfimm/iqac004. eCollection 2022.
3
Single-Cell Analysis of Antigen-Specific CD8+ T-Cell Transcripts Reveals Profiles Specific to mRNA or Adjuvanted Protein Vaccines.
Front Immunol. 2021 Oct 29;12:757151. doi: 10.3389/fimmu.2021.757151. eCollection 2021.
4
Pandemic Preparedness Against Influenza: DNA Vaccine for Rapid Relief.
Front Immunol. 2021 Oct 8;12:747032. doi: 10.3389/fimmu.2021.747032. eCollection 2021.
5
Natural Killer Cells Dampen the Pathogenic Features of Recall Responses to Influenza Infection.
Front Immunol. 2020 Feb 7;11:135. doi: 10.3389/fimmu.2020.00135. eCollection 2020.
6
Recombinant Haemagglutinin Derived From the Ciliated Protozoan Is Protective Against Influenza Infection.
Front Immunol. 2019 Nov 13;10:2661. doi: 10.3389/fimmu.2019.02661. eCollection 2019.
7
Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses.
Mol Ther. 2018 Feb 7;26(2):446-455. doi: 10.1016/j.ymthe.2017.11.017. Epub 2017 Dec 5.
8
Nasal IgA Provides Protection against Human Influenza Challenge in Volunteers with Low Serum Influenza Antibody Titre.
Front Microbiol. 2017 May 17;8:900. doi: 10.3389/fmicb.2017.00900. eCollection 2017.
9
Inflammatory responses to influenza vaccination at the extremes of age.
Immunology. 2017 Aug;151(4):451-463. doi: 10.1111/imm.12742. Epub 2017 May 16.

本文引用的文献

1
A Multi-Component Prime-Boost Vaccination Regimen with a Consensus MOMP Antigen Enhances Chlamydia trachomatis Clearance.
Front Immunol. 2016 Apr 28;7:162. doi: 10.3389/fimmu.2016.00162. eCollection 2016.
4
Polarizing T and B Cell Responses by APC-Targeted Subunit Vaccines.
Front Immunol. 2015 Jul 20;6:367. doi: 10.3389/fimmu.2015.00367. eCollection 2015.
5
PHiD-CV induces anti-Protein D antibodies but does not augment pulmonary clearance of nontypeable Haemophilus influenzae in mice.
Vaccine. 2015 Sep 11;33(38):4954-61. doi: 10.1016/j.vaccine.2015.07.034. Epub 2015 Jul 26.
6
Using Plasmids as DNA Vaccines for Infectious Diseases.
Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.PLAS-0028-2014.
7
A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.
PLoS One. 2015 Jun 19;10(6):e0130375. doi: 10.1371/journal.pone.0130375. eCollection 2015.
8
Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.
Expert Rev Vaccines. 2015 Jun;14(6):805-14. doi: 10.1586/14760584.2015.1029919. Epub 2015 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验