Suppr超能文献

MOST:一种基于短读长测序的改良多位点序列分型工具。

MOST: a modified MLST typing tool based on short read sequencing.

作者信息

Tewolde Rediat, Dallman Timothy, Schaefer Ulf, Sheppard Carmen L, Ashton Philip, Pichon Bruno, Ellington Matthew, Swift Craig, Green Jonathan, Underwood Anthony

机构信息

Infectious Disease Informatics Unit, Public Health England , London , United Kingdom.

Gastrointestinal Bacteria Reference Unit, Public Health England , London , United Kingdom.

出版信息

PeerJ. 2016 Aug 17;4:e2308. doi: 10.7717/peerj.2308. eCollection 2016.

Abstract

Multilocus sequence typing (MLST) is an effective method to describe bacterial populations. Conventionally, MLST involves Polymerase Chain Reaction (PCR) amplification of housekeeping genes followed by Sanger DNA sequencing. Public Health England (PHE) is in the process of replacing the conventional MLST methodology with a method based on short read sequence data derived from Whole Genome Sequencing (WGS). This paper reports the comparison of the reliability of MLST results derived from WGS data, comparing mapping and assembly-based approaches to conventional methods using 323 bacterial genomes of diverse species. The sensitivity of the two WGS based methods were further investigated with 26 mixed and 29 low coverage genomic data sets from Salmonella enteridis and Streptococcus pneumoniae. Of the 323 samples, 92.9% (n = 300), 97.5% (n = 315) and 99.7% (n = 322) full MLST profiles were derived by the conventional method, assembly- and mapping-based approaches, respectively. The concordance between samples that were typed by conventional (92.9%) and both WGS methods was 100%. From the 55 mixed and low coverage genomes, 89.1% (n = 49) and 67.3% (n = 37) full MLST profiles were derived from the mapping and assembly based approaches, respectively. In conclusion, deriving MLST from WGS data is more sensitive than the conventional method. When comparing WGS based methods, the mapping based approach was the most sensitive. In addition, the mapping based approach described here derives quality metrics, which are difficult to determine quantitatively using conventional and WGS-assembly based approaches.

摘要

多位点序列分型(MLST)是一种描述细菌群体的有效方法。传统上,MLST涉及对管家基因进行聚合酶链反应(PCR)扩增,然后进行桑格DNA测序。英国公共卫生署(PHE)正在用一种基于全基因组测序(WGS)产生的短读长序列数据的方法取代传统的MLST方法。本文报告了从WGS数据得出的MLST结果的可靠性比较,使用323个不同物种的细菌基因组,将基于比对和组装的方法与传统方法进行比较。利用肠炎沙门氏菌和肺炎链球菌的26个混合基因组数据集和29个低覆盖基因组数据集,进一步研究了两种基于WGS的方法的敏感性。在323个样本中,传统方法、基于组装的方法和基于比对的方法分别得出了92.9%(n = 300)、97.5%(n = 315)和99.7%(n = 322)的完整MLST图谱。传统方法(92.9%)和两种WGS方法分型的样本之间的一致性为100%。在55个混合和低覆盖基因组中,基于比对和基于组装的方法分别得出了89.1%(n = 49)和67.3%(n = 37)的完整MLST图谱。总之,从WGS数据得出MLST比传统方法更敏感。比较基于WGS的方法时,基于比对的方法最敏感。此外,这里描述的基于比对的方法得出了质量指标,而使用传统方法和基于WGS组装的方法难以定量确定这些指标。

相似文献

1
MOST: a modified MLST typing tool based on short read sequencing.
PeerJ. 2016 Aug 17;4:e2308. doi: 10.7717/peerj.2308. eCollection 2016.
3
STRAIN: an R package for multi-locus sequence typing from whole genome sequencing data.
BMC Bioinformatics. 2019 Nov 22;20(Suppl 9):347. doi: 10.1186/s12859-019-2887-1.
5
Multilocus sequence typing of total-genome-sequenced bacteria.
J Clin Microbiol. 2012 Apr;50(4):1355-61. doi: 10.1128/JCM.06094-11. Epub 2012 Jan 11.
6
Identification of highly variable sequence fragments in unmapped reads for rapid bacterial genotyping.
BMC Genomics. 2022 Dec 29;23(Suppl 3):445. doi: 10.1186/s12864-022-08550-4.
7
Short read sequence typing (SRST): multi-locus sequence types from short reads.
BMC Genomics. 2012 Jul 24;13:338. doi: 10.1186/1471-2164-13-338.
8
A multilocus sequence typing scheme for complex (MAB-multilocus sequence typing) using whole-genome sequencing data.
Int J Mycobacteriol. 2019 Jul-Sep;8(3):273-280. doi: 10.4103/ijmy.ijmy_106_19.
10
Core/Whole Genome Multilocus Sequence Typing and Core Genome SNP-Based Typing of OXA-48-Producing Clinical Isolates From Spain.
Front Microbiol. 2020 Jan 31;10:2961. doi: 10.3389/fmicb.2019.02961. eCollection 2019.

引用本文的文献

1
Enhanced laboratory surveillance study of species in England.
J Med Microbiol. 2025 Jun;74(6). doi: 10.1099/jmm.0.002017.
2
Fritz Kauffmann: innovator in microbial classification.
APMIS. 2025 Jan;133(1):e13504. doi: 10.1111/apm.13504.
3
A case of penicillin-resistant group B Streptococcus isolated from a patient in the UK.
J Antimicrob Chemother. 2025 Feb 3;80(2):399-404. doi: 10.1093/jac/dkae419.
6
Improving nitrofurantoin resistance prediction in from whole-genome sequence by integrating NfsA/B enzyme assays.
Antimicrob Agents Chemother. 2024 Jul 9;68(7):e0024224. doi: 10.1128/aac.00242-24. Epub 2024 May 20.
7
Presence of phage-plasmids in multiple serovars of .
Microb Genom. 2024 May;10(5). doi: 10.1099/mgen.0.001247.
8
An investigation of the presence and antimicrobial susceptibility of in raw and cooked kibble diets for dogs in the United Kingdom.
Front Microbiol. 2024 Jan 8;14:1301841. doi: 10.3389/fmicb.2023.1301841. eCollection 2023.
10
Phylogenetic relationship and virulence composition of O26:H11 cattle and human strain collections in Scotland; 2002-2020.
Front Microbiol. 2023 Nov 6;14:1260422. doi: 10.3389/fmicb.2023.1260422. eCollection 2023.

本文引用的文献

1
Identification of Salmonella for public health surveillance using whole genome sequencing.
PeerJ. 2016 Apr 5;4:e1752. doi: 10.7717/peerj.1752. eCollection 2016.
2
SRST2: Rapid genomic surveillance for public health and hospital microbiology labs.
Genome Med. 2014 Nov 20;6(11):90. doi: 10.1186/s13073-014-0090-6. eCollection 2014.
3
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1.
5
Short read sequence typing (SRST): multi-locus sequence types from short reads.
BMC Genomics. 2012 Jul 24;13:338. doi: 10.1186/1471-2164-13-338.
6
Multilocus sequence typing of total-genome-sequenced bacteria.
J Clin Microbiol. 2012 Apr;50(4):1355-61. doi: 10.1128/JCM.06094-11. Epub 2012 Jan 11.
7
BIGSdb: Scalable analysis of bacterial genome variation at the population level.
BMC Bioinformatics. 2010 Dec 10;11:595. doi: 10.1186/1471-2105-11-595.
8
The Sequence Alignment/Map format and SAMtools.
Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验