Suppr超能文献

为噪声掩蔽研究最大化噪声能量。

Maximizing noise energy for noise-masking studies.

作者信息

Jules Étienne Cédric, Arleo Angelo, Allard Rémy

机构信息

Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, France, 75012.

出版信息

Behav Res Methods. 2017 Aug;49(4):1278-1290. doi: 10.3758/s13428-016-0786-1.

Abstract

Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

摘要

噪声掩蔽实验被广泛用于研究视觉功能。为了发挥作用,噪声通常需要足够强才能显著损害表现,但在某些情况下,即使噪声对比度接近100%的最大可显示极限,它也不会损害表现。为了在更广泛的条件下扩展噪声掩蔽范式的用途,本研究开发了一种具有强大掩蔽强度的噪声。在不超过有限对比度范围的情况下增加掩蔽强度有两种典型方法:使用二值噪声而非高斯噪声,或者滤除与任务无关的频率(即去除这些频率不会影响表现)。本研究结合了这两种方法以进一步提高掩蔽强度。我们表明,在滤波过程之后对噪声进行二值化处理,在总对比度范围相等的情况下,会大幅增加滤波器通带内频率的能量。一项验证实验表明,使用二值化滤波噪声和滤波噪声(在通带内频率处具有相等的噪声能量)可获得相似的表现,这表明大幅降低对比度范围的二值化操作对表现没有显著影响。我们得出结论,二值化滤波噪声(更一般地说,截断滤波噪声)可以大幅增加通带内频率处的噪声能量。因此,在对比度范围有限的情况下,二值化滤波噪声可以显示出比高斯噪声更高的能量水平,从而扩大噪声掩蔽范式有用的条件范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验