Suppr超能文献

基底外侧杏仁核输入到前额叶皮层的抑制性门控

Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

作者信息

McGarry Laura M, Carter Adam G

机构信息

Center for Neural Science, New York University, New York, New York 10003.

Center for Neural Science, New York University, New York, New York 10003

出版信息

J Neurosci. 2016 Sep 7;36(36):9391-406. doi: 10.1523/JNEUROSCI.0874-16.2016.

Abstract

UNLABELLED

Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion.

SIGNIFICANCE STATEMENT

The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections.

摘要

未标注

前额叶皮质(PFC)与基底外侧杏仁核(BLA)之间的相互作用调节着情绪行为。然而,对这些脑区之间功能连接的回路水平理解仍不完整。BLA向PFC发送显著的谷氨酸能投射,但这些输入的总体影响主要是抑制性的。在这里,我们结合靶向记录和光遗传学来研究小鼠眶下PFC中这种抑制作用的突触基础。我们发现,BLA输入优先靶向第2层皮质杏仁核神经元,而不是邻近的皮质纹状体神经元。然而,这些输入与邻近的表达小白蛋白和生长抑素的中间神经元建立了更强的连接。来自这两类中间神经元的抑制性连接在皮质杏仁核神经元上也更强。因此,BLA输入能够通过两条平行的中间神经元通路驱动强大的前馈抑制。此外,由于短期突触动力学的差异,这些中间神经元的作用在重复活动期间会发生变化。因此,小白蛋白中间神经元在刺激序列开始时被激活,而生长抑素中间神经元的激活在这些序列中逐渐增强。总之,这些结果揭示了BLA如何通过直接兴奋和前馈抑制的复杂相互作用影响PFC。它们还突出了靶向连接在这个皮质回路中对多个投射神经元和中间神经元的作用。我们的发现为BLA如何影响PFC回路提供了机制性理解,对该回路如何参与情绪调节具有重要意义。

意义声明

前额叶皮质(PFC)和基底外侧杏仁核(BLA)相互作用以控制情绪行为。在这里,我们表明BLA输入引起眶下PFC中第2层投射神经元的直接兴奋和前馈抑制。与附近的皮质纹状体神经元相比,BLA输入在皮质杏仁核神经元上要强得多。然而,这些输入在表达小白蛋白和生长抑素的中间神经元上甚至更强大。因此,BLA输入激活了两个平行的抑制性网络,它们的作用在重复活动期间会发生变化。最后,与皮质纹状体神经元相比,来自这些中间神经元的连接在皮质杏仁核神经元上也更强大。总之,我们的结果证明了BLA如何通过涉及多种细胞类型和输入特异性连接的复杂序列主要抑制PFC。

相似文献

1
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.
J Neurosci. 2016 Sep 7;36(36):9391-406. doi: 10.1523/JNEUROSCI.0874-16.2016.
2
Prefrontal Cortex Drives Distinct Projection Neurons in the Basolateral Amygdala.
Cell Rep. 2017 Nov 7;21(6):1426-1433. doi: 10.1016/j.celrep.2017.10.046.
3
Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex.
eNeuro. 2016 Mar 21;3(2). doi: 10.1523/ENEURO.0002-16.2016. eCollection 2016 Mar-Apr.
4
Ventral Hippocampal Inputs Preferentially Drive Corticocortical Neurons in the Infralimbic Prefrontal Cortex.
J Neurosci. 2018 Aug 15;38(33):7351-7363. doi: 10.1523/JNEUROSCI.0378-18.2018. Epub 2018 Jun 29.
5
Cell-Type- and Endocannabinoid-Specific Synapse Connectivity in the Adult Nucleus Accumbens Core.
J Neurosci. 2020 Jan 29;40(5):1028-1041. doi: 10.1523/JNEUROSCI.1100-19.2019. Epub 2019 Dec 12.
6
Hippocampal-Evoked Feedforward Inhibition in the Nucleus Accumbens.
J Neurosci. 2018 Oct 17;38(42):9091-9104. doi: 10.1523/JNEUROSCI.1971-18.2018. Epub 2018 Sep 5.
9
Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex.
J Neurophysiol. 2013 Jul;110(1):221-9. doi: 10.1152/jn.00531.2012. Epub 2013 May 8.
10
Laminar- and Target-Specific Amygdalar Inputs in Rat Primary Gustatory Cortex.
J Neurosci. 2016 Mar 2;36(9):2623-37. doi: 10.1523/JNEUROSCI.3224-15.2016.

引用本文的文献

1
An amygdala-cortical circuit for encoding generalized fear memories.
Mol Psychiatry. 2025 Aug 12. doi: 10.1038/s41380-025-03140-8.
3
The locus coeruleus influences behavior by coordinating effective integration of fear memories and sensory input.
PLoS Biol. 2025 Jul 14;23(7):e3003272. doi: 10.1371/journal.pbio.3003272. eCollection 2025 Jul.
5
Inhibitory specificity from a connectomic census of mouse visual cortex.
Nature. 2025 Apr;640(8058):448-458. doi: 10.1038/s41586-024-07780-8. Epub 2025 Apr 9.
7
8
9
Pain in Parkinson's disease: a neuroanatomy-based approach.
Brain Commun. 2024 Jun 18;6(4):fcae210. doi: 10.1093/braincomms/fcae210. eCollection 2024.

本文引用的文献

1
4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.
Nat Neurosci. 2016 Apr;19(4):605-12. doi: 10.1038/nn.4251. Epub 2016 Feb 15.
2
Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex.
Neuroscience. 2016 May 3;321:197-209. doi: 10.1016/j.neuroscience.2015.07.041. Epub 2015 Jul 21.
3
Callosal projections drive neuronal-specific responses in the mouse auditory cortex.
J Neurosci. 2015 Apr 29;35(17):6703-13. doi: 10.1523/JNEUROSCI.5049-14.2015.
5
GABA-A receptor inhibition of local calcium signaling in spines and dendrites.
J Neurosci. 2014 Nov 26;34(48):15898-911. doi: 10.1523/JNEUROSCI.0869-13.2014.
6
Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.
Nat Neurosci. 2014 Sep;17(9):1198-207. doi: 10.1038/nn.3783. Epub 2014 Aug 10.
7
Equalizing excitation-inhibition ratios across visual cortical neurons.
Nature. 2014 Jul 31;511(7511):596-600. doi: 10.1038/nature13321. Epub 2014 Jun 22.
8
A cortical circuit for gain control by behavioral state.
Cell. 2014 Mar 13;156(6):1139-1152. doi: 10.1016/j.cell.2014.01.050.
9
Activation of prefrontal cortical parvalbumin interneurons facilitates extinction of reward-seeking behavior.
J Neurosci. 2014 Mar 5;34(10):3699-705. doi: 10.1523/JNEUROSCI.0235-13.2014.
10
Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition.
Neuron. 2014 Jan 8;81(1):61-8. doi: 10.1016/j.neuron.2013.10.031. Epub 2013 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验