National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China.
ACS Appl Mater Interfaces. 2016 Oct 5;8(39):25888-25895. doi: 10.1021/acsami.6b06073. Epub 2016 Sep 20.
Transition metal oxides/oxyhydroxides (TMOs) are promising high-capacity materials for electrochemical energy storage. However, the low rate and poor cyclability hinder practical applications. In this work, we developed a general electrochemical route to fabricate monolithic core/shell sandwiched structures, which are able to significantly improve the electrochemical properties of TMO electrodes by electrically wiring the insulating active materials and alleviating the adverse effects caused by volume changes using engineered porous structures. As an example, a lithium ion battery anode of porous MnO sandwiched between CNT and carbon demonstrates a high capacity of 554 mAh g even after 1000 cycles at 2 A g. An all-solid-state symmetric pseudocapacitor consisting of CNT@MnOOH@polypyrrole exhibits a high specific capacitance of 148 F g and excellent capacitance retention (92% after 10000 cycles at 2 A g). Several other examples and applications have further confirmed the effectiveness of improving the electrochemical properties by core/shell sandwiched structures.
过渡金属氧化物/氢氧化物(TMOs)是一种很有前途的电化学储能高容量材料。然而,其低倍率性能和较差的循环稳定性阻碍了它们的实际应用。在这项工作中,我们开发了一种通用的电化学方法来制备整体式核/壳夹层结构,通过电连接绝缘活性材料并利用工程多孔结构缓解体积变化引起的不利影响,从而显著改善 TMO 电极的电化学性能。例如,多孔 MnO 夹在 CNT 和碳之间的锂离子电池阳极,在 2 A g 的电流密度下经过 1000 次循环后仍具有 554 mAh g 的高容量。由 CNT@MnOOH@聚吡咯组成的全固态对称赝电容在 2 A g 的电流密度下经过 10000 次循环后具有 148 F g 的高比电容和优异的电容保持率(92%)。其他几个例子和应用进一步证实了通过核/壳夹层结构来提高电化学性能的有效性。