School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300350, China.
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Small. 2016 Oct;12(40):5564-5571. doi: 10.1002/smll.201601959. Epub 2016 Aug 26.
Manganese oxides (MnO ) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk-shell nanorods comprising of nitrogen-doped carbon (N-C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn O ) nanoparticles are manufactured via one-step carbonization of α-MnO /ZIF-8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn O /N-C exhibits an reversible capacity of 803 mAh g at 50 mA g after 100 cycles, excellent cyclability with a capacity of 595 mAh g at 1000 mAg after 200 cycles, as well as better rate capability compared with those non-N-C shelled manganese oxides (MnO ). The outstanding electrochemical performance is attributed to the unique yolk-shell nanorod structure, the coating effect of N-C and nanoscale size.
锰氧化物(MnO)是一种很有前途的锂离子电池阳极材料,但由于其本征离子电导率低、极化高和稳定性差,其性能通常不佳。在此,通过一步碳化α-MnO/ZIF-8 前体,制备了氮掺杂碳(N-C)涂层包裹的二氧化锰(MnO)与锌锰氧化物(ZnMn O)纳米粒子的蛋黄壳纳米棒。将其作为锂离子电池的阳极进行评估时,MnO@ZnMn O/N-C 在 50 mA g 下经过 100 次循环后具有 803 mAh g 的可逆容量,在 1000 mAg 下经过 200 次循环后具有 595 mAh g 的优异循环稳定性,且比那些无 N-C 壳的锰氧化物(MnO)具有更好的倍率性能。这种优异的电化学性能归因于独特的蛋黄壳纳米棒结构、N-C 的涂层效应和纳米级尺寸。