Inaguma Yutaka, Matsumoto Ayumi, Noda Mariko, Tabata Hidenori, Maeda Akihiko, Goto Masahide, Usui Daisuke, Jimbo Eriko F, Kikkawa Kiyoshi, Ohtsuki Mamitaro, Momoi Mariko Y, Osaka Hitoshi, Yamagata Takanori, Nagata Koh-Ichi
Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
Department of Pediatrics, Jichi medical university, Tochigi, Japan.
J Neurochem. 2016 Oct;139(2):245-255. doi: 10.1111/jnc.13832. Epub 2016 Sep 19.
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD).
III类磷酸肌醇3激酶(PIK3C3或哺乳动物液泡蛋白分选34同源物,Vps34)调节囊泡运输、自噬和营养感知。最近,我们报道PIK3C3在小鼠大脑皮质的整个发育过程中均有表达,尤其是在胚胎早期。因此,我们研究了PIK3C3在小鼠大脑皮质发育中的作用。采用子宫内电穿孔法急性沉默PIK3C3会导致皮质发生过程中兴奋性神经元的位置缺陷。延时成像显示,异常定位至少部分是由于迁移速度降低所致。当在一个半球的皮质神经元中沉默PIK3C3时,轴突向对侧半球的延伸也会延迟。这些异常表型可被RNAi抗性PIK3C3挽救。值得注意的是,敲低PIK3C3并不影响脑室区神经元祖细胞和干细胞的细胞周期。综上所述,PIK3C3被认为通过调节兴奋性神经元迁移和轴突延伸在皮质发生中起关键作用。同时,当我们对一名患有特定学习障碍的患者进行比较基因组杂交时,在18q12.3(nt. 39554147 - 39661206)上发现了一个107 Kb的缺失,该缺失包含PIK3C3的外显子5 - 23。值得注意的是,上述异常迁移和轴突生长表型不能被缺乏C末端激酶结构域的疾病相关截短突变体(172个氨基酸)挽救。因此,PIK3C3的功能缺陷可能会损害皮质发生,并与特定学习障碍和其他神经发育障碍的病理生理学相关。III类磷酸肌醇3激酶(PIK3C3)的急性敲低会在皮质发生过程中引发兴奋性神经元的迁移缺陷。PIK3C3敲低还会破坏轴突生长,但不影响体内祖细胞增殖。由于在一名患有特定学习障碍(SLD)的患者中检测到PIK3C3的缺失突变,PIK3C3参与神经发育障碍可能是一个有趣的未来研究课题。