Labor für Biomolekulare Nanotechnologie, Physik Department and Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, Garching near Munich, Germany.
Lehrstuhl für Molekulare Biophysik, Physik Department, Technische Universität München, James-Franck-Strasse 1, Garching near Munich, Germany.
Science. 2016 Sep 9;353(6304). doi: 10.1126/science.aaf5508.
We directly measured at the single-molecule level the forces and lifetimes of DNA base-pair stacking interactions for all stack sequence combinations. Our experimental approach combined dual-beam optical tweezers with DNA origami components to allow positioning of blunt-end DNA helices so that the weak stacking force could be isolated. Base-pair stack arrays that lacked a covalent backbone connection spontaneously dissociated at average rates ranging from 0.02 to 500 per second, depending on the sequence combination and stack array size. Forces in the range from 2 to 8 piconewtons that act along the helical direction only mildly accelerated the stochastic unstacking process. The free-energy increments per stack that we estimate from the measured forward and backward kinetic rates ranged from -0.8 to -3.4 kilocalories per mole, depending on the sequence combination. Our data contributes to understanding the mechanics of DNA processing in biology, and it is helpful for designing the kinetics of DNA-based nanoscale devices according to user specifications.
我们直接在单分子水平上测量了所有碱基对堆叠序列组合的 DNA 碱基对堆叠相互作用的力和寿命。我们的实验方法结合了双光束光镊和 DNA 折纸组件,允许定位平头 DNA 螺旋,从而可以隔离弱堆叠力。缺乏共价骨架连接的碱基对堆叠阵列以平均每秒 0.02 到 500 个的速率自发解离,具体取决于序列组合和堆叠阵列的大小。沿螺旋方向作用的 2 到 8 皮牛顿范围内的力仅轻微加速了随机解堆叠过程。我们从测量的正向和反向动力学速率估计的每个堆叠的自由能增量范围为-0.8 至-3.4 千卡/摩尔,具体取决于序列组合。我们的数据有助于理解生物学中 DNA 处理的力学,并且有助于根据用户规格设计基于 DNA 的纳米级设备的动力学。