Caroprese Vincenzo, Tekin Cem, Cencen Veronika, Mosayebi Majid, Asmari Navid, Liverpool Tanniemola B, Woolfson Derek N, Fantner Georg E, Bastings Maartje M C
Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
Laboratory for Bio- and Nano-Instrumentation, Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
Nat Chem. 2025 Mar;17(3):325-333. doi: 10.1038/s41557-025-01741-y. Epub 2025 Feb 13.
Supramolecular networks are abundantly present in nature and, like crystalline materials, often develop from an initial nucleation site, followed by growth based on directional interactions between components. Traditionally, the binding strength and directionality of interactions is thought to dictate nucleation and crystal growth, whereas structural flexibility favours defects. Usually, macromonomers present multiple binding sites with relative intramolecular flexibility, but the effects of such flexibility on regulating network formation have been given little attention. Here we introduce the concept of 'interface flexibility' and demonstrate its critical importance in the nucleation and growth of supramolecular networks. As a model system, we use trisymmetric DNA-based macromonomers, which organize into hexagonal networks through weak π-π interactions at their tips. The directional nature and low spatial tolerance of π-π interactions mean that small shifts in orientation have a large effect on effective valency. We show that too much interface flexibility disrupts network formation, regardless of affinity. Tuning the interface flexibility greatly expands the available design space for synthetic supramolecular materials.
超分子网络在自然界中大量存在,并且与晶体材料一样,通常从初始成核位点开始形成,随后基于组分之间的定向相互作用进行生长。传统上,相互作用的结合强度和方向性被认为决定了成核和晶体生长,而结构灵活性则有利于缺陷的形成。通常,大分子单体具有多个具有相对分子内灵活性的结合位点,但这种灵活性对调节网络形成的影响却很少受到关注。在这里,我们引入了“界面灵活性”的概念,并证明了其在超分子网络成核和生长中的至关重要性。作为一个模型系统,我们使用基于三对称DNA的大分子单体,它们通过其末端的弱π-π相互作用组装成六边形网络。π-π相互作用的方向性和低空间耐受性意味着方向上的微小变化会对有效价态产生很大影响。我们表明,无论亲和力如何,过多的界面灵活性都会破坏网络形成。调节界面灵活性极大地扩展了合成超分子材料的可用设计空间。