Suppr超能文献

模糊神经网络在全尺寸内循环厌氧反应器生物降解及沼气生产建模中的应用

Application of fuzzy neural networks for modeling of biodegradation and biogas production in a full-scale internal circulation anaerobic reactor.

作者信息

Ruan Jujun, Chen Xiaohong, Huang Mingzhi, Zhang Tao

机构信息

a School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-Sen University , Guangzhou , China.

b Department of Water Resources and Environment, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation , Sun Yat-sen University , Guangzhou , China.

出版信息

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017 Jan 2;52(1):7-14. doi: 10.1080/10934529.2016.1221216. Epub 2016 Sep 9.

Abstract

This paper presents the development and evaluation of three fuzzy neural network (FNN) models for a full-scale anaerobic digestion system treating paper-mill wastewater. The aim was the investigation of feasibility of the approach-based control system for the prediction of effluent quality and biogas production from an internal circulation (IC) anaerobic reactor system. To improve FNN performance, fuzzy subtractive clustering was used to identify model's architecture and optimize fuzzy rule, and a total of 5 rules were extracted in the IF-THEN format. Findings of this study clearly indicated that, compared to NN models, FNN models had smaller RMSE and MAPE as well as bigger R for the testing datasets than NN models. The proposed FNN model produced smaller deviations and exhibited a superior predictive performance on forecasting of both effluent quality and biogas (methane) production rates with satisfactory determination coefficients greater than 0.90. From the results, it was concluded that FNN modeling could be applied in IC anaerobic reactor for predicting the biodegradation and biogas production using paper-mill wastewater.

摘要

本文介绍了用于处理造纸厂废水的全尺寸厌氧消化系统的三种模糊神经网络(FNN)模型的开发与评估。目的是研究基于方法的控制系统对内部循环(IC)厌氧反应器系统的出水水质和沼气产量进行预测的可行性。为了提高FNN性能,采用模糊减法聚类来识别模型结构并优化模糊规则,共提取了5条IF-THEN格式的规则。本研究结果清楚地表明,与神经网络模型相比,FNN模型对于测试数据集具有更小的均方根误差(RMSE)和平均绝对百分比误差(MAPE)以及更大的决定系数(R)。所提出的FNN模型产生的偏差更小,并且在预测出水水质和沼气(甲烷)产量率方面表现出卓越的预测性能,其决定系数大于0.90,令人满意。从结果得出结论,FNN建模可应用于IC厌氧反应器,以预测使用造纸厂废水的生物降解和沼气产量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验