Suppr超能文献

甘氨酸能抑制性突触处的桥连蛋白与突触强度及动力学的调节

Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses.

作者信息

Alvarez Francisco J

机构信息

Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.

出版信息

Brain Res Bull. 2017 Mar;129:50-65. doi: 10.1016/j.brainresbull.2016.09.003. Epub 2016 Sep 6.

Abstract

Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.

摘要

甘氨酸能突触在脑干和脊髓中占主导地位,它们调节运动和感觉处理。其突触后机制一直被认为相当简单,因为它们缺乏多种甘氨酸受体亚型,并且在超微结构水平上具有相对简单的突触后致密物。然而,这种简单性具有误导性,因为它们的突触后区域受到多种控制突触抑制效能的复杂机制的调节。早期研究表明,甘氨酸能抑制强度和动力学在很大程度上取决于结构特征而非分子复杂性。这些包括对突触后甘氨酸受体数量、其定位以及共定位的GABA受体数量和GABA-甘氨酸共传递的调节。我们现在知道这些特性受gephyrin的控制。Gephyrin是有史以来发现的第一个突触后支架蛋白,最近发现它通过剪接变体、翻译后修饰、细胞内运输以及与潜在细胞骨架的相互作用表现出很大程度的变异和调节。许多这些机制受汇聚的兴奋性活动支配,并调节gephyrin寡聚化和受体结合、突触后致密物的结构(进而整个突触复合体)、受体保留和稳定性。这些新发现的分子机制定义了gephyrin突触后区域的大小和数量以及其中所含甘氨酸和GABA受体的数量和比例。总之,它们控制不同强度和时间特性的甘氨酸能突触的出现,以最佳匹配每个单个神经元或局部树突区室接收到的兴奋性驱动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验