Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, Inserm, PSL University, Paris, France.
Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University, Wuerzburg, Germany.
Elife. 2021 Dec 8;10:e74441. doi: 10.7554/eLife.74441.
Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.
精确的定量信息关于突触的分子结构对于理解特定突触群体的功能特异性和下游信号转导过程至关重要。甘氨酸受体(GlyRs)是脊髓和脑干中主要的快速抑制性神经递质受体。这些抑制性甘氨酸能网络对运动和感觉过程起着至关重要的调节作用。到目前为止,不同网络特异性的 GlyRs 的纳米级组织尚未确定。在这里,我们使用定量超分辨率相关光和电子显微镜技术,定量表征了脊髓组织中甘氨酸能突触的分子排列和超微结构。我们表明,内源性 GlyRs 在整个脊髓和整个成年期的突触中表现出相同的受体支架占有率和大约 2000 个 GlyRs µm 的恒定包装密度,尽管腹角突触的总拷贝数是背角突触的两倍,后突触区更大,形态更曲折。我们证明,尽管突触大小减小,但在神经运动疾病肌阵挛的小鼠模型中的甘氨酸能突触中保持这种典型的分子排列,表明 GlyRs 的分子组织在这种低聚物中得以保留。因此,我们得出结论,抑制性突触后特化的形态和大小而不是 GlyR 包装的差异决定了运动和感觉脊髓网络中甘氨酸能神经传递的突触后强度。