Alibardi Lorenzo
Comparative Histolab and Department of BIGEA, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
Protoplasma. 2017 May;254(3):1259-1281. doi: 10.1007/s00709-016-1019-2. Epub 2016 Sep 10.
Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.
羽毛是源自羽枝嵴形态发生的具有可变复杂性的角质微分支。对发育中和再生中的羽毛进行的组织学和超微结构分析阐明了羽枝嵴中细胞的三维组织。羽毛细胞源自羽毛胚的胚胎上皮褶皱,羽枝/羽小枝细胞和支持细胞在其中组织成分支结构。随后支持细胞的退化使得由角质β-蛋白以及少量中间丝(IF)(α)角蛋白、富含组氨酸的蛋白和表皮分化复合体的角质蛋白组成的羽小枝细胞得以分离。特定的蛋白质组合在羽小枝、羽枝、羽轴或羽根中产生具有特定生物力学特性的角质材料。在不同羽毛类型的进化过程中,编码角质羽毛β-蛋白的基因组发生了大量扩增,并通过与8 - 10纳米IF角蛋白不同的机制形成了3 - 4纳米厚的细丝。在鸡中,超过130个主要位于27号和25号染色体上的基因编码10 - 12千道尔顿、含有97 - 105个氨基酸的羽毛角质β-蛋白。约35个位于25号染色体上的基因编码鳞片蛋白(由122 - 146个氨基酸组成的14 - 16千道尔顿蛋白)、爪和喙蛋白(由134 - 164个氨基酸组成的14 - 17千道尔顿蛋白)。羽毛形态发生会周期性地重新激活以产生替换羽毛,多种羽毛类型可由表皮和真皮组织的相互作用产生。这篇综述展示了解释毛囊中羽枝嵴形态发生如何转化为主要类型的分支或非分支羽毛(如绒羽、正羽、纤羽和刚毛)三维形状的示意图模型。不同羽毛类型中羽枝嵴形成的时间模式以及通过信号分子从真皮乳头进行的分子控制尚不清楚。羽枝嵴形态发生过程及其在毛囊内形成模式的进化和多样化使得包括用于飞行的不对称平面羽毛在内的众多类型羽毛得以起源和多样化。