Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Sci Rep. 2016 Sep 12;6:33306. doi: 10.1038/srep33306.
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.
为了提高水下光通信的系统容量,我们利用空域同时传输多个正交的空间光束,每个光束承载一个独立的数据通道。在本文中,我们通过单个孔径复用和传输四个绿光轨道角动量(OAM)光束,实现了高达 40-Gbit/s 的链路。此外,我们研究了散射/浑浊、水流和热梯度诱导湍流的降级效应,发现热梯度引起的失真最大,浑浊引起的损耗最大。我们使用两种不同的数据产生技术展示了系统结果,一种是在 1064nm 下用于 10-Gbit/s/光束,另一种是在 520nm 下用于 1-Gbit/s/光束;我们使用这两种技术是因为目前的数据调制技术在红外(IR)比在绿光下更快。对于 40-Gbit/s 的链路,数据在红外进行调制,而 OAM 印记则使用专门设计的超表面相位掩模在绿光中进行。对于 4-Gbit/s 的链路,使用绿光激光二极管进行直接调制。最后,我们表明可以通过多通道均衡处理来减轻由热梯度引起的信道间串扰。