Amador-Angulo Leticia, Mendoza Olivia, Castro Juan R, Rodríguez-Díaz Antonio, Melin Patricia, Castillo Oscar
Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22414, Mexico.
Universidad Autónoma de Baja California, Tijuana 22390, Mexico.
Sensors (Basel). 2016 Sep 9;16(9):1458. doi: 10.3390/s16091458.
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm.
提出了一种混合方法,该方法由不同类型的模糊系统组成,如用于蜂群优化(BCO)算法的α和β参数动态自适应的一型模糊逻辑系统(T1FLS)、区间二型模糊逻辑系统(IT2FLS)和广义二型模糊逻辑系统(GT2FLS)。这项工作的目标是专注于BCO技术,以在模糊控制器设计中找到隶属函数的最优分布。我们专门使用BCO来调整自主移动机器人轨迹稳定性的模糊控制器的隶属函数。我们在广义二型模糊逻辑系统模型中添加了两种类型的扰动,以便更好地分析其在不确定性下的行为,与原始BCO相比,这显示出了更好的结果。我们实现了各种性能指标;ITAE、IAE、ISE、ITSE、RMSE和MSE来衡量控制器的性能。实验结果表明,在BCO算法参数的动态自适应中,使用GT2FLS比使用IT2FLS和T1FLS具有更好的性能。