Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA.
Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA.; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.; Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.; Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA.
Sci Adv. 2016 Sep 9;2(9):e1501228. doi: 10.1126/sciadv.1501228. eCollection 2016 Sep.
The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."
单跨膜蛋白 KCNE3 在多种生物背景下调节多种电压门控离子通道。在上皮细胞中,KCNE3 调节 KCNQ1 钾离子 (K(+)) 通道的功能,以实现与跨上皮氯离子 (Cl(-)) 分泌偶联的 K(+) 再循环,这是各种器官中生理上关键的细胞转运过程,其功能障碍会导致疾病,如囊性纤维化 (CF)、霍乱和肺水肿。结构、计算、生化和电生理研究导致 KCNE3-KCNQ1 复合物的原子明确综合结构模型,该模型解释了 KCNE3 如何诱导 KCNQ1 通道活性的组成激活,这是 K(+)再循环的关键组成部分。这一机制的核心是 KCNE3 跨膜结构域两端的残基与 KCNQ1 电压感应域 S4 螺旋的细胞内和细胞外末端残基之间的直接相互作用。这些相互作用似乎稳定了 S4 的激活“向上”状态构象,这是 KCNQ1 通道门完全打开的先决条件。此外,综合结构模型被用于指导电生理研究,阐明了雌激素如何加剧女性 CF 肺病患者 CF 性别差距现象的分子基础。