Sahu Indra D, Craig Andrew F, Dunagan Megan M, Troxel Kaylee R, Zhang Rongfu, Meiberg Andrew G, Harmon Corrinne N, McCarrick Robert M, Kroncke Brett M, Sanders Charles R, Lorigan Gary A
Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States.
Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37232, United States.
Biochemistry. 2015 Oct 20;54(41):6402-12. doi: 10.1021/acs.biochem.5b00505. Epub 2015 Oct 7.
KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR structure of KCNE1 in micelles.
KCNE1是一种单跨膜蛋白,可调节电压门控钾通道(包括KCNQ1)的功能。编码这两种蛋白的基因发生遗传突变可导致诸如先天性耳聋、长QT综合征、室性心律失常、晕厥和心源性猝死等疾病。尽管KCNE1具有生物学意义,但其生理相关天然膜结合状态的结构和动态特性尚未完全了解。在本研究中,使用定点自旋标记(SDSL)和电子顺磁共振(EPR)光谱研究了双层脂质囊泡中KCNE1的结构动力学和拓扑结构。对KCNE1蛋白序列进行了53个残基的氮氧化物EPR扫描,包括跨膜结构域(45 - 71)的所有27个残基以及脂质双层囊泡中KCNE1的N端和C端的26个残基,并根据氮氧化物侧链运动进行了分析。连续波EPR谱线形状分析表明,与KCNE1的细胞外区域相比,位于KCNE1跨膜结构域中的氮氧化物自旋标记侧链的流动性较低。EPR数据还显示,与N端相比,KCNE1的C端流动性更高。对41个位点进行了EPR功率饱和实验,其中包括先前提出位于跨膜结构域(TMD)的18个残基以及N端和C端的23个残基,以确定KCNE1相对于1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸胆碱(POPC)/1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸 - (1'-rac - 甘油)(POPG)脂质双层的拓扑结构。结果表明,跨膜结构域确实埋在膜内,跨越脂质双层的宽度。功率饱和数据还显示,KCNE1的细胞外区域暴露于溶剂中,其中一些部分与膜表面部分或弱相互作用。这些结果与先前发表的KCNE1在胶束中的溶液NMR结构一致。