Suppr超能文献

用于集成光子学及其他领域的光学超波导

Optical meta-waveguides for integrated photonics and beyond.

作者信息

Meng Yuan, Chen Yizhen, Lu Longhui, Ding Yimin, Cusano Andrea, Fan Jonathan A, Hu Qiaomu, Wang Kaiyuan, Xie Zhenwei, Liu Zhoutian, Yang Yuanmu, Liu Qiang, Gong Mali, Xiao Qirong, Sun Shulin, Zhang Minming, Yuan Xiaocong, Ni Xingjie

机构信息

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.

Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China.

出版信息

Light Sci Appl. 2021 Nov 22;10(1):235. doi: 10.1038/s41377-021-00655-x.

Abstract

The growing maturity of nanofabrication has ushered massive sophisticated optical structures available on a photonic chip. The integration of subwavelength-structured metasurfaces and metamaterials on the canonical building block of optical waveguides is gradually reshaping the landscape of photonic integrated circuits, giving rise to numerous meta-waveguides with unprecedented strength in controlling guided electromagnetic waves. Here, we review recent advances in meta-structured waveguides that synergize various functional subwavelength photonic architectures with diverse waveguide platforms, such as dielectric or plasmonic waveguides and optical fibers. Foundational results and representative applications are comprehensively summarized. Brief physical models with explicit design tutorials, either physical intuition-based design methods or computer algorithms-based inverse designs, are cataloged as well. We highlight how meta-optics can infuse new degrees of freedom to waveguide-based devices and systems, by enhancing light-matter interaction strength to drastically boost device performance, or offering a versatile designer media for manipulating light in nanoscale to enable novel functionalities. We further discuss current challenges and outline emerging opportunities of this vibrant field for various applications in photonic integrated circuits, biomedical sensing, artificial intelligence and beyond.

摘要

纳米制造技术的日益成熟使得光子芯片上出现了大量复杂的光学结构。将亚波长结构的超表面和超材料集成到光波导的标准构建模块上,正逐渐重塑光子集成电路的格局,催生出众多在控制导行电磁波方面具有前所未有的强大能力的超波导。在此,我们回顾了超结构波导的最新进展,这些进展将各种功能性亚波长光子架构与不同的波导平台(如介质或等离子体波导以及光纤)协同起来。全面总结了基础研究成果和代表性应用。还列举了具有明确设计教程的简要物理模型,这些设计教程包括基于物理直觉的设计方法或基于计算机算法的逆向设计。我们强调了超光学如何通过增强光与物质的相互作用强度来大幅提升器件性能,或者提供一种用于在纳米尺度上操纵光以实现新功能的通用设计介质,从而为基于波导的器件和系统注入新的自由度。我们进一步讨论了当前面临的挑战,并概述了这一充满活力的领域在光子集成电路、生物医学传感、人工智能及其他领域的各种应用中所呈现的新机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8e/8608813/134b066588d7/41377_2021_655_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验