Gatu Johnson M, Knauer J P, Cerjan C J, Eckart M J, Grim G P, Hartouni E P, Hatarik R, Kilkenny J D, Munro D H, Sayre D B, Spears B K, Bionta R M, Bond E J, Caggiano J A, Callahan D, Casey D T, Döppner T, Frenje J A, Glebov V Yu, Hurricane O, Kritcher A, LePape S, Ma T, Mackinnon A, Meezan N, Patel P, Petrasso R D, Ralph J E, Springer P T, Yeamans C B
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
Phys Rev E. 2016 Aug;94(2-1):021202. doi: 10.1103/PhysRevE.94.021202. Epub 2016 Aug 15.
An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.
通过对这些实验的精确诊断,部分获得对低温分层填充氘(D)和氚(T)的胶囊内爆中燃烧动力学的准确理解,对于评估国家点火设施实现点火的障碍至关重要。我们展示了此类内爆产生的中子的测量结果。表观离子温度T_{ion}是从初级中子谱的方差推断出来的。观察到DT的T_{ion}始终高于DD的T_{ion},并且随着表观DT T_{ion}的增加,差异也在增大。DD和DT T_{ion}的视线均方根变化很小,约为150eV,表明是各向同性源。鉴于观察到的T_{ion},DD中子产额相对于DT中子产额始终较高。DT温度和密度的空间和时间变化、周围DT燃料中的DD - DT微分衰减以及流体运动变化导致DT T_{ion}大于DD T_{ion},但在一维模型中不足以解释这些数据。我们假设在三维解释中,这些效应结合起来可以解释结果。