Suppr超能文献

混合学习环境下用于声音分类的半监督主动学习

Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.

作者信息

Han Wenjing, Coutinho Eduardo, Ruan Huabin, Li Haifeng, Schuller Björn, Yu Xiaojie, Zhu Xuan

机构信息

Language Computing Lab, Samsung R&D Institute of China - Beijing (SRC-B), Beijing, China.

Department of Music, University of Liverpool, Liverpool, United Kingdom.

出版信息

PLoS One. 2016 Sep 14;11(9):e0162075. doi: 10.1371/journal.pone.0162075. eCollection 2016.

Abstract

Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances.

摘要

在声音分类任务中,应对标注数据稀缺是一个常见问题。声音分类方法通常基于监督学习算法,这种算法需要标注数据,而标注数据往往很稀缺,这会导致模型泛化能力不佳。在本文中,我们将基于置信度的主动学习和自训练进行有效结合,目的是尽量减少声音分类模型训练中对人工标注的需求。所提出的方法通过计算待标注实例的分类器置信度分数来对其进行预处理,然后将分数较低的候选实例交给人工标注员,而分数较高的实例则由机器自动标注。我们在两种实际场景中展示了该方法的可行性和有效性:基于池的处理和基于流的处理。大量实验结果表明,与被动学习、主动学习和自训练相比,在这两种场景下,我们的方法达到相同性能所需的标注实例显著更少。在一个包含16930个声音实例的声音分类任务中,基于池的场景和基于流的场景下人工标注实例数量均减少了52.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/997b/5023122/8dcdf16ff4a8/pone.0162075.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验