Maia Margarida R G, Marques Sara, Cabrita Ana R J, Wallace R John, Thompson Gertrude, Fonseca António J M, Oliveira Hugo M
REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal; REQUIMTE, LAQV, DGAOT, Faculdade de Ciências, Universidade do PortoPorto, Portugal.
CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do PortoVairão, Portugal; Departamento Clinicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.
Front Microbiol. 2016 Aug 31;7:1381. doi: 10.3389/fmicb.2016.01381. eCollection 2016.
Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.
在此,我们介绍一种用于比浊法监测液体培养物中细菌生长的新策略。该仪器包括一个光源、一个定制的3D打印培养管支架和一个小型化分光光度计,它们通过光缆连接。由于其占地面积小且可以使用外部光源进行操作,因此能够以简单通用的方式直接从培养管中监测细菌生长。这种新的便携式测量技术用于监测兼性厌氧菌(大肠杆菌ATCC/25922和金黄色葡萄球菌ATCC/29213)和严格厌氧菌(溶纤维丁酸弧菌JW11、解朊丁酸弧菌P18和痤疮丙酸杆菌DSMZ 1897)的生长。对于大肠杆菌和金黄色葡萄球菌,将根据归一化光密度值计算出的生长速率与使用台式分光光度计获得的生长速率进行比较,结果无显著差异(P = 0.256)。对于严格厌氧菌,在长达48小时的重复实验中观察到了高精度(相对标准偏差<3.5%)。鉴于其定制潜力,这种多通道装置可以适应定制比浊法监测的进一步发展,例如使用发光二极管作为光源或流通池。