Suppr超能文献

双序列相关及其抽样方差的估计及其在荟萃分析中的应用。

Estimation of the biserial correlation and its sampling variance for use in meta-analysis.

机构信息

Max Planck Institute for Human Development, Berlin, Germany.

Maastricht University, Maastricht, The Netherlands.

出版信息

Res Synth Methods. 2017 Jun;8(2):161-180. doi: 10.1002/jrsm.1218. Epub 2016 Sep 15.

Abstract

Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, biserial correlation coefficients can therefore be integrated with product-moment correlation coefficients in the same meta-analysis. The present article describes the estimation of the biserial correlation coefficient for meta-analytic purposes and reports simulation results comparing different methods for estimating the coefficient's sampling variance. The findings indicate that commonly employed methods yield inconsistent estimates of the sampling variance across a broad range of research situations. In contrast, consistent estimates can be obtained using two methods that appear to be unknown in the meta-analytic literature. A variance-stabilizing transformation for the biserial correlation coefficient is described that allows for the construction of confidence intervals for individual coefficients with close to nominal coverage probabilities in most of the examined conditions. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

元分析常用于综合研究两个连续变量之间相关关系的研究结果。当两个变量之一只有二分测量值时,可以使用双列相关系数来估计两个潜在连续变量之间的积差相关。与点双列相关系数不同,因此双列相关系数可以与同一元分析中的积差相关系数结合使用。本文描述了双列相关系数的估计,用于元分析目的,并报告了比较估计系数抽样方差的不同方法的模拟结果。研究结果表明,在广泛的研究情况下,常用的方法对抽样方差的估计不一致。相比之下,使用两种似乎在元分析文献中未知的方法可以得到一致的估计。本文还描述了一种双列相关系数的方差稳定化转换,该转换允许在大多数检查条件下构建具有接近名义覆盖率的单个系数的置信区间。版权所有©2016 年 John Wiley & Sons, Ltd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验