Suppr超能文献

睡眠至峰值验证:一款可检测睡眠剥夺期间与疲劳相关反应时间变化的智能手机应用程序。

Validation of sleep-2-Peak: A smartphone application that can detect fatigue-related changes in reaction times during sleep deprivation.

作者信息

Brunet Jean-François, Dagenais Dominique, Therrien Marc, Gartenberg Daniel, Forest Geneviève

机构信息

Laboratoire du Sommeil, Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais, Gatineau, Québec, Canada, J8X 3X7.

Neuro Summum, Gatineau, QC, Canada.

出版信息

Behav Res Methods. 2017 Aug;49(4):1460-1469. doi: 10.3758/s13428-016-0802-5.

Abstract

Despite its high sensitivity and validity in the context of sleep loss, the Psychomotor Vigilance Test (PVT) could be improved. The aim of the present study was to validate a new smartphone PVT-type application called sleep-2-Peak (s2P) by determining its ability to assess fatigue-related changes in alertness in a context of extended wakefulness. Short 3-min versions of s2P and of the classic PVT were administered at every even hour during a 35-h total sleep deprivation protocol. In addition, subjective measures of sleepiness were collected. The outcomes on these tests were then compared using Pearson product-moment correlations, t tests, and repeated measures within-groups analyses of variance. The results showed that both tests significantly correlated on all outcome variables, that both significantly distinguished between the alert and sleepy states in the same individual, and that both varied similarly through the sleep deprivation protocol as sleep loss accumulated. All outcome variables on both tests also correlated significantly with the subjective measures of sleepiness. These results suggest that a 3-min version of s2P is a valid tool for differentiating alert from sleepy states and is as sensitive as the PVT for tracking fatigue-related changes during extended wakefulness and sleep loss. Unlike the PVT, s2P does not provide feedback to subjects on each trial. We discuss how this feature of s2P raises the possibility that the performance results measured by s2P could be less impacted by motivational confounds, giving this tool added value in particular clinical and/or research settings.

摘要

尽管心理运动警觉性测试(PVT)在睡眠缺失的情况下具有较高的敏感性和有效性,但仍有改进的空间。本研究的目的是通过确定一款名为sleep-2-Peak(s2P)的新型智能手机PVT类应用程序在长时间清醒状态下评估与疲劳相关的警觉性变化的能力,来验证该应用程序。在一项为期35小时的完全睡眠剥夺实验中,每隔偶数小时对s2P的简短3分钟版本和经典PVT进行测试。此外,还收集了嗜睡的主观测量数据。然后使用Pearson积差相关、t检验以及组内重复测量方差分析对这些测试的结果进行比较。结果表明,两种测试在所有结果变量上都显著相关,在同一个体中都能显著区分警觉状态和困倦状态,并且随着睡眠剥夺实验的进行,随着睡眠缺失的累积,二者的变化趋势相似。两种测试的所有结果变量也都与嗜睡的主观测量数据显著相关。这些结果表明,3分钟版本的s2P是区分警觉状态和困倦状态的有效工具,在长时间清醒和睡眠缺失期间跟踪与疲劳相关的变化方面与PVT一样敏感。与PVT不同,s2P在每次测试后不会向受试者提供反馈。我们讨论了s2P的这一特性如何增加了其测量的性能结果受动机混淆影响较小的可能性,从而使该工具在特定的临床和/或研究环境中具有附加价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验