Suppr超能文献

多中心病房急性肾损伤预测模型的开发

Development of a Multicenter Ward-Based AKI Prediction Model.

作者信息

Koyner Jay L, Adhikari Richa, Edelson Dana P, Churpek Matthew M

机构信息

Department of Medicine, University of Chicago, Chicago, Illinois.

出版信息

Clin J Am Soc Nephrol. 2016 Nov 7;11(11):1935-1943. doi: 10.2215/CJN.00280116. Epub 2016 Sep 15.

Abstract

BACKGROUND AND OBJECTIVES

Identification of patients at risk for AKI on the general wards before increases in serum creatinine would enable preemptive evaluation and intervention to minimize risk and AKI severity. We developed an AKI risk prediction algorithm using electronic health record data on ward patients (Electronic Signal to Prevent AKI).

DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: All hospitalized ward patients from November of 2008 to January of 2013 who had serum creatinine measured in five hospitals were included. Patients with an initial ward serum creatinine >3.0 mg/dl or who developed AKI before ward admission were excluded. Using a discrete time survival model, demographics, vital signs, and routine laboratory data were used to predict the development of serum creatinine-based Kidney Disease Improving Global Outcomes AKI. The final model, which contained all variables, was derived in 60% of the cohort and prospectively validated in the remaining 40%. Areas under the receiver operating characteristic curves were calculated for the prediction of AKI within 24 hours for each unique observation for all patients across their inpatient admission. We performed time to AKI analyses for specific predicted probability cutoffs from the developed score.

RESULTS

Among 202,961 patients, 17,541 (8.6%) developed AKI, with 1242 (0.6%) progressing to stage 3. The areas under the receiver operating characteristic curve of the final model in the validation cohort were 0.74 (95% confidence interval, 0.74 to 0.74) for stage 1 and 0.83 (95% confidence interval, 0.83 to 0.84) for stage 3. Patients who reached a cutoff of ≥0.010 did so a median of 42 (interquartile range, 14-107) hours before developing stage 1 AKI. This same cutoff provided sensitivity and specificity of 82% and 65%, respectively, for stage 3 and was reached a median of 35 (interquartile range, 14-97) hours before AKI.

CONCLUSIONS

Readily available electronic health record data can be used to improve AKI risk stratification with good to excellent accuracy. Real time use of Electronic Signal to Prevent AKI would allow early interventions before changes in serum creatinine and may improve costs and outcomes.

摘要

背景与目的

在血清肌酐升高之前识别普通病房中急性肾损伤(AKI)的高危患者,有助于进行预防性评估和干预,以降低风险并减轻AKI的严重程度。我们利用病房患者的电子健康记录数据开发了一种AKI风险预测算法(预防AKI的电子信号)。

设计、地点、参与者与测量方法:纳入2008年11月至2013年1月期间在五家医院住院且检测了血清肌酐的所有病房患者。排除初始病房血清肌酐>3.0mg/dl或在病房入院前已发生AKI的患者。使用离散时间生存模型,将人口统计学、生命体征和常规实验室数据用于预测基于血清肌酐的改善全球肾脏病预后(KDIGO)AKI的发生情况。最终模型包含所有变量,在60%的队列中得出,并在其余40%的队列中进行前瞻性验证。计算所有患者住院期间每次独特观察在24小时内预测AKI的受试者工作特征曲线下面积。我们对根据所开发评分的特定预测概率临界值进行了至AKI发生时间的分析。

结果

在202,961例患者中,17,541例(8.6%)发生AKI,其中1242例(0.6%)进展至3期。验证队列中最终模型对于1期AKI的受试者工作特征曲线下面积为0.74(95%置信区间,0.74至0.74),对于3期为0.83(95%置信区间,0.83至0.84)。达到≥0.010临界值的患者在发生1期AKI前中位数为42(四分位间距,14 - 107)小时。该相同临界值对于3期AKI的敏感性和特异性分别为82%和65%,在AKI发生前中位数为35(四分位间距,14 - 97)小时达到。

结论

现成的电子健康记录数据可用于以良好至优异的准确性改善AKI风险分层。实时使用预防AKI的电子信号可在血清肌酐变化之前进行早期干预,并可能改善成本和预后。

相似文献

1
Development of a Multicenter Ward-Based AKI Prediction Model.多中心病房急性肾损伤预测模型的开发
Clin J Am Soc Nephrol. 2016 Nov 7;11(11):1935-1943. doi: 10.2215/CJN.00280116. Epub 2016 Sep 15.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验