Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
Adv Colloid Interface Sci. 2017 Jan;239:46-60. doi: 10.1016/j.cis.2016.08.010. Epub 2016 Sep 6.
Rheology is a powerful method for material characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid-liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials. We discuss the need to link thermodynamic studies of coacervation phase behavior with characterization of material dynamics, and provide parallel examples of how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics. We conclude by highlighting key areas of need in the field, and specifically call for the development of a mechanistic understanding of how molecular-level interactions in complex coacervate-based materials affect both self-assembly and material dynamics.
流变学是一种强大的材料特性分析方法,可以提供有关材料自组装、结构和分子间相互作用的详细信息。在这里,我们回顾了线性粘弹性测量在复杂凝聚物基材料的流变特性分析中的应用。复杂凝聚是一种静电和熵驱动的缔合液-液相分离现象,可导致形成块状液相,或自组装成分级的、微相分离的材料。我们讨论了将凝聚相行为的热力学研究与材料动力学的表征联系起来的必要性,并提供了电荷化学计量、离子强度和聚合物链长等参数如何影响自组装和材料动力学的并行示例。最后,我们强调了该领域的关键需求领域,并特别呼吁对复杂凝聚物基材料中的分子间相互作用如何影响自组装和材料动力学有一个机械的理解。