Butcher Matthew J, Filipowicz Adam R, Waseem Tayab C, McGary Christopher M, Crow Kevin J, Magilnick Nathaniel, Boldin Mark, Lundberg Patric S, Galkina Elena V
From the Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk (M.J.B., A.R.F., T.C.W., C.M.M., K.J.C., P.S.L., E.V.G.); and Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA (N.M., M.B.).
Circ Res. 2016 Nov 11;119(11):1190-1203. doi: 10.1161/CIRCRESAHA.116.309764. Epub 2016 Sep 15.
Forkhead box P3 T regulatory cells (Tregs) are key players in maintaining immune homeostasis. Evidence suggests that Tregs respond to environmental cues to permit or suppress inflammation. In atherosclerosis, Th1-driven inflammation affects Treg homeostasis, but the mechanisms governing this phenomenon are unclear.
Here, we address whether atherosclerosis impacts Treg plasticity and functionality in Apoe mice, and what effect Treg plasticity might have on the pathology of atherosclerosis.
We demonstrate that atherosclerosis promotes Treg plasticity, resulting in the reduction of CXCR3 Tregs and the accumulation of an intermediate Th1-like interferon (IFN)-γCCR5 Treg subset (Th1/Tregs) within the aorta. Importantly, Th1/Tregs arise in atherosclerosis from bona fide Tregs, rather than from T-effector cells. We show that Th1/Tregs recovered from atherosclerotic mice are dysfunctional in suppression assays. Using an adoptive transfer system and plasticity-prone Mir146a Tregs, we demonstrate that elevated IFNγ Mir146a Th1/Tregs are unable to adequately reduce atherosclerosis, arterial Th1, or macrophage content within Apoe mice, in comparison to Mir146a Tregs. Finally, via single-cell RNA-sequencing and real-time -polymerase chain reaction, we show that Th1/Tregs possess a unique transcriptional phenotype characterized by coexpression of Treg and Th1 lineage genes and a downregulation of Treg-related genes, including Ikzf2, Ikzf4, Tigit, Lilrb4, and Il10. In addition, an ingenuity pathway analysis further implicates IFNγ, IFNα, interleukin-2, interleukin-7, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), T-cell receptor, and Csnk2b-related pathways in regulating Treg plasticity.
Atherosclerosis drives Treg plasticity, resulting in the accumulation of dysfunctional IFNγ Th1/Tregs that may permit further arterial inflammation and atherogenesis.
叉头框P3调节性T细胞(Tregs)是维持免疫稳态的关键因素。有证据表明,Tregs会对环境信号做出反应,从而促进或抑制炎症。在动脉粥样硬化中,Th1驱动的炎症会影响Treg的稳态,但控制这一现象的机制尚不清楚。
在此,我们探讨动脉粥样硬化是否会影响Apoe小鼠中Treg的可塑性和功能,以及Treg可塑性可能对动脉粥样硬化病理产生何种影响。
我们证明动脉粥样硬化会促进Treg的可塑性,导致主动脉内CXCR3 Tregs减少,以及中间型Th1样干扰素(IFN)-γCCR5 Treg亚群(Th1/Tregs)的积累。重要的是,动脉粥样硬化中的Th1/Tregs源自真正的Tregs,而非效应T细胞。我们发现,从动脉粥样硬化小鼠中分离出的Th1/Tregs在抑制试验中功能失调。通过过继转移系统和易于发生可塑性的Mir146a Tregs,我们证明,与Mir146a Tregs相比,IFNγ升高的Mir146a Th1/Tregs无法充分减轻Apoe小鼠的动脉粥样硬化、动脉Th1或巨噬细胞含量。最后,通过单细胞RNA测序和实时聚合酶链反应,我们发现Th1/Tregs具有独特的转录表型,其特征是Treg和Th1谱系基因的共表达以及Treg相关基因(包括Ikzf2、Ikzf4、Tigit、Lilrb4和Il10)的下调。此外,一项 Ingenuity 通路分析进一步表明,IFNγ、IFNα、白细胞介素-2、白细胞介素-7、细胞毒性T淋巴细胞相关蛋白4(CTLA-4)、T细胞受体和酪蛋白激酶2β(Csnk2b)相关通路参与调节Treg的可塑性。
动脉粥样硬化驱动Treg的可塑性,导致功能失调的IFNγ Th1/Tregs积累,这可能会进一步加剧动脉炎症和动脉粥样硬化的发生。