Damari Ran, Kallush Shimshon, Fleischer Sharly
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
Tel-Aviv University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel.
Phys Rev Lett. 2016 Sep 2;117(10):103001. doi: 10.1103/PhysRevLett.117.103001. Epub 2016 Sep 1.
We experimentally study the optical- and terahertz-induced rotational dynamics of asymmetric molecules in the gas phase. Terahertz and optical fields are identified as two distinct control handles over asymmetric molecules, as they couple to the rotational degrees of freedom via the molecular dipole and polarizability selectively. The distinction between those two rotational handles is highlighted by different types of quantum revivals observed in long-duration (>100 ps) field-free rotational evolution. The experimental results are in excellent agreement with random phase wave function (RPWF) simulations [Phys. Rev. A 91, 063420 (2015)] and provide verification of the RPWF as an efficient method for calculating asymmetric molecular dynamics at ambient temperatures, where exact calculation methods are practically not feasible. Our observations and analysis pave the way for orchestrated excitations by both optical and terahertz fields as complementary rotational handles that enable a plethora of new possibilities in three-dimensional rotational control of asymmetric molecules.
我们通过实验研究了气相中不对称分子的光诱导和太赫兹诱导的旋转动力学。太赫兹场和光场被视为控制不对称分子的两种不同手段,因为它们分别通过分子偶极矩和极化率与旋转自由度耦合。在长时间(>100 ps)的无场旋转演化中观察到的不同类型的量子复苏突出了这两种旋转手段之间的差异。实验结果与随机相位波函数(RPWF)模拟[《物理评论A》91, 063420 (2015)] 高度吻合,并验证了RPWF作为一种在环境温度下计算不对称分子动力学的有效方法,而精确计算方法在此实际不可行。我们的观察和分析为利用光场和太赫兹场作为互补的旋转手段进行精心调控开辟了道路,这为不对称分子的三维旋转控制带来了众多新的可能性。