Laboratorio de Modelado Molecular y Bioinformática y diseño de farmaos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México D.F, Mexico; Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México D.F, Mexico; Departamento de Farmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México D.F, Mexico.
Laboratorio de Modelado Molecular y Bioinformática y diseño de farmaos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México D.F, Mexico; Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México D.F, Mexico.
Eur J Med Chem. 2016 Nov 29;124:1142-1154. doi: 10.1016/j.ejmech.2016.08.028. Epub 2016 Aug 16.
Inhibition of β-site amyloid-β-protein precursor cleaving enzyme 1 (BACE1) represents a promising approach for the treatment of Alzheimer's disease (AD). However, the development of a selective BACE1 inhibitor is difficult due to its highly flexible catalytic site and homology to other aspartic proteases, including BACE2 and Cathepsin D (CTSD). Aiming to better understand the structural factors responsible for selective BACE1 inhibition, we performed alignment studies, molecular dynamics (MD) simulations and docking studies to explore the recognition of four selective BACE1 inhibitors by aspartyl proteases. The results show that selective BACE1 inhibition may be due to the formation of strong electrostatic interactions with Asp32 and Asp228 and a large number of hydrogen bonds, π-π and Van der Waals interactions with the amino acid residues located inside the catalytic cavity, which has different volume and shape compared to BACE2 and CTSD. Hindrance effects avoid the accommodation of ligands in the small catalytic site of BACE2, resulting in a lower affinity and the high cavity of CTSD results in the formation of a small number of interactions with the ligands, although they show a similar binding mode with BACE1. These results might help to rationalize the design of selective BACE1 inhibitors.
β-位点淀粉样前体蛋白裂解酶 1(BACE1)的抑制作用代表了治疗阿尔茨海默病(AD)的一种很有前途的方法。然而,由于其高度灵活的催化位点和与其他天冬氨酸蛋白酶(包括 BACE2 和组织蛋白酶 D(CTSD))的同源性,开发选择性 BACE1 抑制剂具有一定的难度。为了更好地了解负责选择性 BACE1 抑制的结构因素,我们进行了比对研究、分子动力学(MD)模拟和对接研究,以探索天冬氨酸蛋白酶对四种选择性 BACE1 抑制剂的识别。结果表明,选择性 BACE1 抑制可能是由于与 Asp32 和 Asp228 形成强静电相互作用以及与位于催化腔内部的氨基酸残基形成大量氢键、π-π 和范德华相互作用所致,与 BACE2 和 CTSD 相比,这些氨基酸残基具有不同的体积和形状。阻碍效应可防止配体容纳在 BACE2 的小催化位点中,从而导致亲和力降低,而 CTSD 的高腔导致与配体形成少量相互作用,尽管它们与 BACE1 表现出相似的结合模式。这些结果可能有助于合理化选择性 BACE1 抑制剂的设计。