Baumann Stefan, Renker Matthias, Hetjens Svetlana, Fuller Stephen R, Becher Tobias, Loßnitzer Dirk, Lehmann Ralf, Akin Ibrahim, Borggrefe Martin, Lang Siegfried, Wichmann Julian L, Schoepf U Joseph
Heart & Vascular Center, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC 29425-2260, USA; 1st Department of Medicine-Cardiology, University Medical Centre Mannheim, Mannheim, Germany and with DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany.
Heart & Vascular Center, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC 29425-2260, USA; Kerckhoff Heart and Thorax Center, Department of Cardiology, Bad Nauheim, Germany.
Acad Radiol. 2016 Nov;23(11):1402-1411. doi: 10.1016/j.acra.2016.07.007. Epub 2016 Sep 14.
Invasive coronary angiography (ICA) with fractional flow reserve (FFR) assessment is the reference standard for the detection of hemodynamically relevant coronary lesions. We have investigated whether coronary computed tomography angiography (cCTA)-derived FFR (fractional flow reserve from coronary computed tomographic angiography [CT-FFR]) measurement improves diagnostic accuracy over cCTA.
A literature search was performed for studies comparing invasive FFR, cCTA, and CT-FFR. The analysis included three prospective multicenter trials and two retrospective single-center studies; a total of 765 patients and 1306 vessels were included in the meta-analysis. Compared to invasive FFR on a per-lesion basis, CT-FFR reached a pooled sensitivity, specificity, positive predictive value, and negative predictive value of 83.7% (95% confidence interval [CI]: 78.1-89.3), 74.7% (95% CI: 52.2-97.1), 64.8% (95% CI: 52.1-77.5), and 90.1% (95% CI: 80.8-99.3) compared to 84.6% (95% CI: 78.1-91.1), 49.7% (95% CI: 31.1-68.4), 39.0% (95% CI: 28.0-50.1), and 87.3% (95% CI: 72.5-100.0) for cCTA alone. In 634 vessels with intermediate stenosis (30%-70%), sensitivity, specificity, positive predictive value, and negative predictive value were 81.4% (95% CI: 70.4-92.9), 71.7% (95% CI: 54.5-89.0), 59.4% (95% CI: 35.5-83.4), and 89.9% (95% CI: 85.0-94.7) compared to 90.2% (95% CI: 80.6-99.9), 35.4% (95% CI: 23.5-47.3), 50.7% (95% CI: 30.6-70.8), and 82.5% (95% CI: 64.5-100.0) for cCTA alone. The summary area under the receiver operating characteristic curve of CT-FFR was superior to cCTA alone on a per-vessel (0.90 [95% CI: 0.82-0.98] vs 0.74 [95% CI: 0.63-0.86]; P = .0047) and for intermediate stenoses (0.76 [95% CI: 0.65-0.88] vs 0.57 [95% CI: 0.49-0.66]; P = .0027).
CT-FFR significantly improves specificity without noticeably altering the sensitivity of cCTA with invasive FFR as a reference standard for the detection of hemodynamically relevant stenosis.
采用血流储备分数(FFR)评估的有创冠状动脉造影(ICA)是检测血流动力学相关冠状动脉病变的参考标准。我们研究了基于冠状动脉计算机断层扫描血管造影(cCTA)的FFR(冠状动脉计算机断层扫描血管造影衍生的血流储备分数[CT-FFR])测量是否比cCTA能提高诊断准确性。
对比较有创FFR、cCTA和CT-FFR的研究进行文献检索。分析纳入三项前瞻性多中心试验和两项回顾性单中心研究;荟萃分析共纳入765例患者和1306支血管。与基于病变的有创FFR相比,CT-FFR的汇总灵敏度、特异度、阳性预测值和阴性预测值分别为83.7%(95%置信区间[CI]:78.1 - 89.3)、74.7%(95% CI:52.2 - 97.1)、64.8%(95% CI:52.1 - 77.5)和90.1%(95% CI:80.8 - 99.3),而单独cCTA的相应值分别为84.6%(95% CI:78.1 - 91.1)、49.7%(95% CI:31.1 - 68.4)、39.0%(95% CI:28.0 - 50.1)和87.3%(95% CI:72.5 - 100.0)。在634支中度狭窄(30% - 70%)的血管中,CT-FFR的灵敏度、特异度、阳性预测值和阴性预测值分别为81.4%(95% CI:70.4 - 92.9)、71.7%(95% CI:54.5 - 89.0)、59.4%(95% CI:35.5 - 83.4)和89.9%(95% CI:85.0 - 94.7),而单独cCTA的相应值分别为90.2%(95% CI:80.6 - 99.9)、35.4%(95% CI:23.5 - 47.3)、50.7%(95% CI:30.6 - 70.8)和82.5%(95% CI:64.5 - 100.0)。CT-FFR的受试者操作特征曲线下的汇总面积在单支血管水平(0.90 [95% CI:0.82 - 0.98] 对 0.74 [95% CI:0.63 - 0.86];P = 0.0047)以及中度狭窄血管中(0.76 [95% CI:0.65 - 0.88] 对 0.57 [95% CI:0.49 - 0.66];P = 0.0027)均优于单独的cCTA。
以有创FFR作为检测血流动力学相关狭窄的参考标准时,CT-FFR显著提高了特异度,且未明显改变cCTA的灵敏度。