Medrano-Gracia Pau, Ormiston John, Webster Mark, Beier Susann, Young Alistair, Ellis Chris, Wang Chunliang, Smedby Örjan, Cowan Brett
University of Auckland, Auckland, New Zealand.
EuroIntervention. 2016 Sep 18;12(7):845-54. doi: 10.4244/EIJV12I7A139.
The aim of this study was to define the shape variations, including diameters and angles, of the major coronary artery bifurcations.
Computed tomographic angiograms from 300 adults with a zero calcium score and no stenoses were segmented for centreline and luminal models. A computational atlas was constructed enabling automatic quantification of 3D angles, diameters and lengths of the coronary tree. The diameter (mean±SD) of the left main coronary was 3.5±0.8 mm and the length 10.5±5.3 mm. The left main bifurcation angle (distal angle or angle B) was 89±21° for cases with, and 75±23° for those without an intermediate artery (p<0.001). Analogous measurements of diameter and angle were tabulated for the other major bifurcations (left anterior descending/diagonal, circumflex/obtuse marginal and right coronary crux). Novel 3D angle definitions are proposed and analysed.
A computational atlas of normal coronary artery anatomy provides distributions of diameter, lengths and bifurcation angles as well as more complex shape analysis. These data define normal anatomical variation, facilitating stent design, selection and optimal treatment strategy. These population models are necessary for accurate computational flow dynamics, can be 3D printed for bench testing bifurcation stents and deployment strategies, and can aid in the discussion of different approaches to the treatment of coronary bifurcations.
本研究旨在明确主要冠状动脉分叉处的形态变化,包括直径和角度。
对300名钙评分为零且无狭窄的成年人的计算机断层血管造影进行分割,以构建中心线和管腔模型。构建了一个计算图谱,能够自动量化冠状动脉树的三维角度、直径和长度。左冠状动脉主干的直径(均值±标准差)为3.5±0.8毫米,长度为10.5±5.3毫米。有中间动脉的病例,左主干分叉角(远端角或B角)为89±21°,无中间动脉的病例为75±23°(p<0.001)。对其他主要分叉处(左前降支/对角支、回旋支/钝缘支和右冠状动脉十字交叉处)的直径和角度进行了类似测量并制成表格。提出并分析了新的三维角度定义。
正常冠状动脉解剖结构的计算图谱提供了直径、长度和分叉角的分布以及更复杂的形态分析。这些数据定义了正常的解剖变异,有助于支架设计、选择和优化治疗策略。这些群体模型对于准确的计算流体动力学是必要的,可以3D打印用于分叉支架和植入策略的台架测试,并且有助于讨论冠状动脉分叉处的不同治疗方法。