Suppr超能文献

Computer analysis reveals changes in renal Na+-glucose cotransporter in diabetic rats.

作者信息

Blank M E, Bode F, Baumann K, Diedrich D F

机构信息

Department of Cell Physiology, University of Hamburg, Federal Republic of Germany.

出版信息

Am J Physiol. 1989 Aug;257(2 Pt 1):C385-96. doi: 10.1152/ajpcell.1989.257.2.C385.

Abstract

A novel, computer-assisted program was developed to analyze the time course of Na+-glucose cotransport by rat renal cortical brush-border membrane vesicles (BBMV). Transporter characteristics can be measured, which routine kinetic analyses fail to distinguish: cotransporter membrane density is derived from the picomoles of D-glucose bound per milligram of protein. Binding is stereospecific, blocked by phlorizin, and supported equally well by Na+ or K+ (but not Cs+). Quasi-first-order influx and efflux rate constants for the composite Na+-driven influx and the (presumed) Na+-independent efflux processes were highly dependent on glucose concentration. Either two Na+-glucose transporters exist in proximal tubules or a single mechanism abruptly changes rate when glucose falls to low levels. The major operation mode is slow, has a high capacity but low affinity, and may have a 2 Na+:2 glucose stoichiometry (Hill coefficient is unity). The minor system is a fast, smaller-capacity, higher-affinity operation with a 2 Na+:1 glucose stoichiometry that was not distinguishable when the same data were analyzed in conventional kinetic plots. Results with streptozocin-induced diabetic rats illustrate the method's utility. Low-glucose-affinity cotransporters were upregulated in hyperglycemic, but not in cachectic, ketoacidotic animals. Rate constants, especially for efflux, were decreased in diabetes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验