Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Nat Nanotechnol. 2016 Oct;11(10):866-871. doi: 10.1038/nnano.2016.166. Epub 2016 Sep 19.
Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.
非晶态材料既可用作结构材料,也可用作功能材料。非晶态固体通常在熔体淬火、辐照、冲击加载或剧烈机械变形等驱动条件下形成。这些极端条件给非晶化过程的直接观察带来了很大的挑战。已经使用了各种实验技术来检测非晶相的形成方式,包括同步加速器 X 射线衍射、透射电子显微镜(TEM)和拉曼光谱,但原子动态特性的描述仍然难以实现。在这里,我们通过使用原位高分辨率 TEM(HRTEM),在原子尺度上展示了硅纳米晶体在机械应变过程中的动态非晶化过程。我们发现,剪切驱动的非晶化首先从金刚石立方(dc)到金刚石六方(dh)相转变开始,在新形成的 dh-Si 相中通过位错成核和积累进行,然后在主导剪切带中发生。这个过程导致了非晶硅(a-Si)带的形成,其中嵌入了 dh-Si 纳米区。dc-Si 通过中间 dh-Si 相的非晶化是固态非晶化的一种以前未知的途径。